Derivative of Gamma Function at 1
Jump to navigation
Jump to search
Theorem
Let $\Gamma$ denote the Gamma function.
Then:
- $\map {\Gamma'} 1 = -\gamma$
where:
- $\map {\Gamma'} 1$ denotes the derivative of the Gamma function evaluated at $1$
- $\gamma$ denotes the Euler-Mascheroni constant.
Proof 1
From Reciprocal times Derivative of Gamma Function:
- $\ds \dfrac {\map {\Gamma'} z} {\map \Gamma z} = -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n - 1} }$
Setting $n = 1$:
\(\ds \frac {\map {\Gamma'} 1} {\map \Gamma 1}\) | \(=\) | \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {1 + n - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\gamma + 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\gamma\) |
Using Gamma Function Extends Factorial:
- $\map \Gamma 1 = \paren {1 - 1}! = 1$
Hence:
- $\map {\Gamma'} 1 = -\gamma \map \Gamma 1 = -\gamma$
$\blacksquare$
Proof 2
Derivative of Gamma Function at 1/Proof 2
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $16.13$: Derivatives of the Gamma Function
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $0,57721 56649 \ldots$