Derivative of General Exponential Function/Proof 1
Jump to navigation
Jump to search
Corollary to Derivative of Exponential Function
Let $a \in \R: a > 0$.
Let $a^x$ be $a$ to the power of $x$.
Then:
- $\map {\dfrac \d {\d x} } {a^x} = a^x \ln a$
Proof
\(\ds \map {\frac \d {\d x} } {a^x}\) | \(=\) | \(\ds \map {\frac \d {\d x} } {e^{x \ln a} }\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln a e^{x \ln a}\) | Derivative of Exponential of a x | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 14.7 \ (2)$