Derivative of General Exponential Function/Proof 3
Jump to navigation
Jump to search
Theorem
Let $a \in \R: a > 0$.
Let $a^x$ be $a$ to the power of $x$.
Then:
- $\map {\dfrac \d {\d x} } {a^x} = a^x \ln a$
Proof
Let $y = a^x$.
Then:
\(\ds \ln y\) | \(=\) | \(\ds x \ln a\) | Logarithm of Power | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 y \dfrac {\d y} {\d x}\) | \(=\) | \(\ds \ln a\) | Derivative of Identity Function: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 {a^x} \dfrac {\d y} {\d x}\) | \(=\) | \(\ds \ln a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {\d y} {\d x}\) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Variable Index: Example $1$.