Derivative of General Exponential Function/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{>0}$.

Let $a^x$ be $a$ to the power of $x$.


Then:

$\map {\dfrac \d {\d x} } {a^x} = a^x \ln a$


Proof

Let $y = a^x$.

Then:

\(\ds \ln y\) \(=\) \(\ds x \ln a\) Logarithm of Power
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 y \dfrac {\d y} {\d x}\) \(=\) \(\ds \ln a\) Derivative of Identity Function: Corollary
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {a^x} \dfrac {\d y} {\d x}\) \(=\) \(\ds \ln a\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds a^x \ln a\)

$\blacksquare$


Sources