Derivative of General Logarithm of Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $u$ be a differentiable real function of $x$.

Let $a \in \R_{>0}$ such that $a \ne 1$

Let $\log_a u$ be the logarithm to base $a$ of $u$.

Then:

$\map {\dfrac \d {\d x} } {\log_a u} = \dfrac {\log_a e} u \dfrac {\d u} {\d x}$


Proof

\(\ds \map {\frac \d {\d x} } {\log_a u}\) \(=\) \(\ds \map {\frac \d {\d u} } {\log_a u} \frac {\d u} {\d x}\) Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \dfrac {\log_a e} u \frac {\d u} {\d x}\) Derivative of General Logarithm Function

$\blacksquare$


Sources