Derivative of Logarithm at One

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\ln x$ be the natural logarithm of $x$ for real $x$ where $x > 0$.


Then:

$\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x = 1$


Proof 1

L'Hôpital's Rule gives:

$\ds \lim_{x \mathop \to c} \frac {\map f x} {\map g x} = \lim_{x \mathop \to c} \frac {\map {f'} x} {\map {g'} x}$

(provided the appropriate conditions are fulfilled).


Here we have:

\(\ds \map \ln {1 + 0}\) \(=\) \(\ds 0\)
\(\ds \map {D_x} {\map \ln {1 + x} }\) \(=\) \(\ds \dfrac 1 {1 + x}\) Chain Rule for Derivatives
\(\ds \map {D_x} x\) \(=\) \(\ds 1\) Derivative of Identity Function


Thus:

$\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x = \lim_{x \mathop \to 0} \frac {\paren {1 + x}^{-1} } 1 = \frac 1 {1 + 0} = 1$

$\blacksquare$


Proof 2

\(\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x\) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} - \ln 1} x\) subtract $\ln 1 = 0$ from the numerator, from Logarithm of 1 is 0
\(\ds \) \(=\) \(\ds \intlimits {\dfrac {\d} {\d x} \ln x} {x \mathop = 1} {}\) Definition of Derivative of Real Function at Point
\(\ds \) \(=\) \(\ds \frac 1 1\) Derivative of Natural Logarithm Function
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$


Proof 3

Note that this proof does not presuppose Derivative of Natural Logarithm Function.

\(\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x\) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac {\map \ln {1 + \frac 1 n} } {\frac 1 n}\)
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} n \, \map \ln {1 + \frac 1 n}\)
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \map \ln {\paren {1 + \frac 1 n}^n}\)
\(\ds \) \(=\) \(\ds \ln e\) Definition of Euler's Number as Limit of Sequence
\(\ds \) \(=\) \(\ds 1\) Natural Logarithm of e is 1

$\blacksquare$