Derivative of Logarithm at One/Proof 1
Jump to navigation
Jump to search
Theorem
Let $\ln x$ be the natural logarithm of $x$ for real $x$ where $x > 0$.
Then:
- $\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x = 1$
Proof
L'Hôpital's Rule gives:
- $\ds \lim_{x \mathop \to c} \frac {\map f x} {\map g x} = \lim_{x \mathop \to c} \frac {\map {f'} x} {\map {g'} x}$
(provided the appropriate conditions are fulfilled).
Here we have:
\(\ds \map \ln {1 + 0}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \map {D_x} {\map \ln {1 + x} }\) | \(=\) | \(\ds \dfrac 1 {1 + x}\) | Chain Rule for Derivatives | |||||||||||
\(\ds \map {D_x} x\) | \(=\) | \(\ds 1\) | Derivative of Identity Function |
Thus:
- $\ds \lim_{x \mathop \to 0} \frac {\map \ln {1 + x} } x = \lim_{x \mathop \to 0} \frac {\paren {1 + x}^{-1} } 1 = \frac 1 {1 + 0} = 1$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 14.5 \ (3) \ \text{(ii)}$