Derivative of Nth Root

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \N_{>0}$.

Let $f: \R \to \R$ be the real function defined as $\map f x = \sqrt [n] x$.


Then:

$\map {f'} x = \dfrac 1 {n \paren {\sqrt [n] x}^{n - 1} }$

everywhere that $\map f x = \sqrt [n] x$ is defined.


Proof

\(\ds \map f x\) \(=\) \(\ds \sqrt [n] x\)
\(\ds \) \(=\) \(\ds x^{1 / n}\) Definition of $n$th Root
\(\ds \leadsto \ \ \) \(\ds \map {f'} x\) \(=\) \(\ds \frac 1 n x^{\paren {1 / n} - 1}\) Power Rule for Derivatives
\(\ds \) \(=\) \(\ds \frac 1 n x^{\paren {1 / n} \paren {1 - n} }\) rearrangement
\(\ds \) \(=\) \(\ds \frac 1 {n x^{\paren {1 / n} \paren {n - 1} } }\) Exponent Combination Laws: Negative Power
\(\ds \) \(=\) \(\ds \frac 1 {n \paren {\sqrt [n] x}^{n - 1} }\) Definition of $n$th Root

$\blacksquare$