Derivative of Sine Function/Proof 4
Jump to navigation
Jump to search
Theorem
- $\map {\dfrac \d {\d x} } {\sin x} = \cos x$
Proof
\(\ds \map {\frac \d {\d x} } {\sin x}\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \sin {x + h} - \sin x} h\) | Definition of Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \sin {\paren {x + \frac h 2} + \frac h 2} - \map \sin {\paren {x + \frac h 2} - \frac h 2} } h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {2 \map \cos {x + \frac h 2} \map \sin {\frac h 2} } h\) | Werner Formula for Cosine by Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \map \cos {x + \frac h 2} \lim_{h \mathop \to 0} \frac {\map \sin {\frac h 2} } {\frac h 2}\) | Multiple Rule for Limits of Real Functions and Product Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x \times 1\) | Cosine Function is Continuous and Limit of $\dfrac {\sin x} x$ at Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Standard Differential Coefficients