Derivative of Sine Function/Proof 4

From ProofWiki
Jump to: navigation, search

Theorem

$\map {D_x} {\sin x} = \cos x$


Proof


\(\displaystyle D_x \left({\sin x}\right)\) \(=\) \(\displaystyle \lim_{h \mathop \to 0} \frac {\sin \left({x + h}\right) - \sin \left({x}\right)} h\) Definition of Derivative of Real Function at Point
\(\displaystyle \) \(=\) \(\displaystyle \lim_{h \mathop \to 0} \frac {\sin \left({ \left({x + \frac h 2}\right) + \frac h 2}\right) - \sin \left({ \left({x + \tfrac h 2}\right) - \tfrac h 2}\right)} h\)
\(\displaystyle \) \(=\) \(\displaystyle \lim_{h \mathop \to 0} \frac {2 \cos \left({x + \frac h 2}\right) \sin \left({\frac h 2}\right)} h\) Simpson's Formula for Cosine by Sine
\(\displaystyle \) \(=\) \(\displaystyle \lim_{h \mathop \to 0} \cos \left({x + \frac h 2}\right) \lim_{h \mathop \to 0} \frac{\sin \left({\frac h 2}\right)} {\frac h 2}\) Multiple Rule for Limits of Functions and Product Rule for Limits of Functions
\(\displaystyle \) \(=\) \(\displaystyle \cos x \times 1\) Continuity of Cosine and Limit of Sine of X over X
\(\displaystyle \) \(=\) \(\displaystyle \cos x\)

$\blacksquare$