Derivative of Uniformly Convergent Sequence of Differentiable Functions
Jump to navigation
Jump to search
Theorem
Let $J$ be a bounded interval.
Let $\left\langle{f_n}\right\rangle$ be a sequence of real functions $f_n: J \to \R$.
Let each of $\left\langle{f_n}\right\rangle$ be differentiable on $J$.
Let $\left\langle{ f_n \left({ x_0 }\right) }\right\rangle$ be convergent for some $x_0 \in J$.
Let the sequence of derivatives $\left\langle{f_n'}\right\rangle$ converge uniformly on $J$ to a function $g : J \to \R$.
Then $\left\langle{f_n}\right\rangle$ converge uniformly on $J$ to a differentiable function $f: J \to \R$ and $D_x f = g$.
Proof
Sources
- 2011: Robert G. Bartle and Donald R. Sherbert: Introduction to Real Analysis (4th ed.) ... (previous): $\S 8.2.3$