Difference in Naturally Ordered Semigroup is Unique

From ProofWiki
Jump to navigation Jump to search


Let $\struct {S, \circ, \preceq}$ be a naturally ordered semigroup.

Let $n, m \in S$ such that $m \preceq n$.

Then there exists a unique difference $n - m$ of $m$ and $n$.


Since $m \preceq n$, by axiom $(NO3)$:

$\exists p \in S: m + p = n$

Now suppose that $p, q \in S$ are such that:

$m + p = m + q = n$

Then it follows from axiom $(NO2)$ that:

$p = q$

Hence the result.