Differentiation of Vector-Valued Function Componentwise
Jump to navigation
Jump to search
Theorem
Let:
- $\mathbf r: t \mapsto \tuple {\map {r_1} t, \map {r_2} t, \ldots, \map {r_n} t}$
be a differentiable vector-valued function.
The derivative of a vector-valued function can be calculated by differentiating each of its component functions:
- $\dfrac {\d \map {\mathbf r} t} {\d t} = \tuple {\dfrac \d {\d t} \map {r_1} t, \dfrac \d {\d t} \map {r_2} t, \ldots, \dfrac \d {\d t} \map {r_n} t}$
Proof
\(\ds \frac {\d \map {\mathbf r} t} {\d t}\) | \(=\) | \(\ds \lim_{\Delta t \mathop \to 0} \frac {\map {\mathbf r} {t + \Delta t} - \map {\mathbf r} t} {\Delta t}\) | Definition of Derivative of Vector-Valued Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} \ds \lim_{\Delta t \mathop \to 0} \dfrac {\map {r_1} {t + \Delta t} - \map {r_1} t} {\Delta t} \\ \ds \lim_{\Delta t \mathop \to 0} \dfrac {\map {r_2} {t + \Delta t} - \map {r_2} t} {\Delta t} \\ \vdots \\ \ds \lim_{\Delta t \mathop \to 0} \dfrac {\map {r_n} {t + \Delta t} - \map {r_n} t} {\Delta t} \end {bmatrix}\) | Definition of Limit of Vector-Valued Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} \dfrac \d {\d t} \map {r_1} t \\ \dfrac \d {\d t} \map {r_2} t \\ \vdots \\ \dfrac \d {\d t} \map {r_n} t \end {bmatrix}\) | Definition of Derivative of Real Function |
$\blacksquare$
Sources
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text {III}$: The Differentiation of Vectors: $1$. Scalar Differentiation: $(3.1)$