Digital Root of Square

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n^2$ be a square number.

Then the digital root of $n^2$ is $1$, $4$, $7$ or $9$.


Proof

Let $\map d n$ denote the digital root base $10$ of $n$.

From Digital Root is Congruent to Number Modulo Base minus 1, $\map d n \equiv n \pmod 9$.

So, let $n = 9 k + m$ where $1 \le m \le 9$.

Thus:

\(\ds n^2\) \(=\) \(\ds \paren {9 k + m}^2\)
\(\ds \) \(=\) \(\ds 81 k^2 + 18 k m + m^2\)
\(\ds \) \(=\) \(\ds 9 \paren {9 k^2 + 2 k m} + m^2\)
\(\ds \) \(\equiv\) \(\ds m^2\) \(\ds \pmod 9\)

We enumerate the squares of the digits:

\(\ds 1^2\) \(=\) \(\ds 1\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 9\)
\(\ds 2^2\) \(=\) \(\ds 4\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod 9\)
\(\ds 3^2\) \(=\) \(\ds 9\)
\(\ds \) \(\equiv\) \(\ds 9\) \(\ds \pmod 9\)
\(\ds 4^2\) \(=\) \(\ds 16\)
\(\ds \) \(\equiv\) \(\ds 7\) \(\ds \pmod 9\)
\(\ds 5^2\) \(=\) \(\ds 25\)
\(\ds \) \(\equiv\) \(\ds 7\) \(\ds \pmod 9\)
\(\ds 6^2\) \(=\) \(\ds 36\)
\(\ds \) \(\equiv\) \(\ds 9\) \(\ds \pmod 9\)
\(\ds 7^2\) \(=\) \(\ds 49\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod 9\)
\(\ds 8^2\) \(=\) \(\ds 64\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 9\)
\(\ds 9^2\) \(=\) \(\ds 81\)
\(\ds \) \(\equiv\) \(\ds 9\) \(\ds \pmod 9\)

Hence the result.

$\blacksquare$