Dihedral Group D4/Cayley Table

From ProofWiki
Jump to navigation Jump to search

Cayley Table for Dihedral Group $D_4$

The Cayley table for the dihedral group $D_4$, whose group presentation is:

$D_4 = \gen {a, b: a^4 = b^2 = e, a b = b a^{-1} }$


can be presented as:

$\begin{array}{l|cccccccc}
      &     e &     a &   a^2 &   a^3 &     b &   b a & b a^2 & b a^3 \\

\hline

e     &     e &     a &   a^2 &   a^3 &     b &   b a & b a^2 & b a^3 \\
a     &     a &   a^2 &   a^3 &     e & b a^3 &     b &   b a & b a^2 \\
a^2   &   a^2 &   a^3 &     e &     a & b a^2 & b a^3 &     b &   b a \\
a^3   &   a^3 &     e &     a &   a^2 &   b a & b a^2 & b a^3 &     b \\
b     &     b &   b a & b a^2 & b a^3 &     e &     a &   a^2 &   a^3 \\
b a   &   b a & b a^2 & b a^3 &     b &   a^3 &     e &     a &   a^2 \\
b a^2 & b a^2 & b a^3 &     b &   b a &   a^2 &   a^3 &     e &     a \\
b a^3 & b a^3 &     b &   b a & b a^2 &     a &   a^2 &   a^3 &     e

\end{array}$


Coset Decomposition of $\set {e, a^2}$

Presenting the above Cayley table with respect to the coset decomposition of the normal subgroup $\gen a^2$ gives:


$\begin{array}{l|cc|cc|cc|cc}
      &     e &   a^2 &     a &   a^3 &     b & b a^2 &   b a & b a^3 \\

\hline

e     &     e &   a^2 &     a &   a^3 &     b & b a^2 &   b a & b a^3 \\
a^2   &   a^2 &     e &   a^3 &     a & b a^2 &     b & b a^3 &   b a \\

\hline

a     &     a &   a^3 &   a^2 &     e & b a^3 &   b a &     b & b a^2 \\
a^3   &   a^3 &     a &     e &   a^2 &   b a & b a^3 & b a^2 &     b \\

\hline

b     &     b & b a^2 &   b a & b a^3 &     e &   a^2 &     a &   a^3 \\
b a^2 & b a^2 &     b & b a^3 &   b a &   a^2 &     e &   a^3 &     a \\

\hline

b a   &   b a & b a^3 & b a^2 &     b &   a^3 &     a &     e &   a^2 \\
b a^3 & b a^3 &   b a &     b & b a^2 &     a &   a^3 &   a^2 &     e

\end{array}$

which is seen to be an example of the Klein $4$-group.


Coset Decomposition of $\set {e, a, a^2, a^3}$

Presenting the above Cayley table with respect to the coset decomposition of the normal subgroup $\gen a$ gives:


$\begin{array}{l|cccc|cccc}
      &     e &     a &   a^2 &   a^3 &     b &   b a & b a^2 & b a^3 \\

\hline

e     &     e &     a &   a^2 &   a^3 &     b &   b a & b a^2 & b a^3 \\
a     &     a &   a^2 &   a^3 &     e & b a^3 &     b &   b a & b a^2 \\
a^2   &   a^2 &   a^3 &     e &     a & b a^2 & b a^3 &     b &   b a \\
a^3   &   a^3 &     e &     a &   a^2 &   b a & b a^2 & b a^3 &     b \\

\hline

b     &     b &   b a & b a^2 & b a^3 &     e &     a &   a^2 &   a^3 \\
b a   &   b a & b a^2 & b a^3 &     b &   a^3 &     e &     a &   a^2 \\
b a^2 & b a^2 & b a^3 &     b &   b a &   a^2 &   a^3 &     e &     a \\
b a^3 & b a^3 &     b &   b a & b a^2 &     a &   a^2 &   a^3 &     e

\end{array}$


Sources