Dimension of Vector Space on Cartesian Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {K, +, \circ}$ be a division ring.

Let $n \in \N_{>0}$.

Let $\mathbf V := \struct {K^n, +, \times}_K$ be the $K$-vector space $K^n$.


Then the dimension of $\mathbf V$ is $n$.


Proof

Let the unity of $K$ be $1$, and the zero of $K$ be $0$.

Consider the vectors:

\(\ds \mathbf e_1\) \(:=\) \(\ds \underbrace {\tuple {1, 0, \ldots, 0} }_{n \text { coordinates} }\)
\(\ds \mathbf e_2\) \(:=\) \(\ds \underbrace {\tuple {0, 1, \ldots, 0} }_{n \text { coordinates} }\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds \mathbf e_n\) \(:=\) \(\ds \underbrace {\tuple {0, 0, \ldots, 1} }_{n \text { coordinates} }\)

Thus $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ is the standard ordered basis of $\mathbf V$.

From Standard Ordered Basis is Basis, $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ is a basis of $\mathbf V$.

The result follows from Linearly Independent Set is Basis iff of Same Cardinality as Dimension.

$\blacksquare$


Sources