# Dirichlet's Test for Uniform Convergence

Jump to navigation
Jump to search

## Contents

## Theorem

Let $D$ be a set.

Let $\struct {V, \norm {\,\cdot\,} }$ be a normed vector space.

Let $a_i, b_i$ be mappings from $D \to M$.

Let the following conditions be satisfied:

- $(1): \quad$ The sequence of partial sums of $\displaystyle \sum_{n \mathop = 1}^\infty \map {a_n} x$ be bounded on $D$

- $(2): \quad \sequence {\map {b_n} x}$ be monotonic for each $x \in D$

- $(3): \quad \map {b_n} x \to 0$ converge uniformly on $D$.

Then:

- $\displaystyle \sum_{n \mathop = 1}^\infty \map {a_n} x \, \map {b_n} x$ converges uniformly on $D$.

## Proof

Suppose $\map {b_n} x \ge \map {b_{n + 1} } x$ for each $x \in D$.

All we need to show is that:

- $\displaystyle \sum_{n \mathop = 1}^\infty \size {\map {b_n} x - \map {b_{n + 1} } x}$

converges uniformly on $D$.

To do this we show that the Cauchy criterion holds.

Assign $\epsilon < 0$.

Then by definition of uniform convergence:

- $\displaystyle \exists N \in \N: \forall x \in D: \forall n \ge N: \size {\map {b_n} x} < \frac \epsilon 2$

Let $x \in D$ and $n > m \ge N$.

Then:

\(\displaystyle \sum_{k \mathop = m + 1}^n \size {\map {b_k} x - \map {b_{k + 1} } x}\) | \(=\) | \(\displaystyle \sum_{k \mathop = m + 1}^n \paren {\map {b_k} x - \map {b_{k + 1} } x}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \map {b_{m + 1} } x - \map {b_{n + 1} } x\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \size {\map {b_{m + 1} } x - \map {b_{n + 1} } x}\) | |||||||||||

\(\displaystyle \) | \(\le\) | \(\displaystyle \size {\map {b_{m + 1} } x + \map {b_{n + 1} } x}\) | |||||||||||

\(\displaystyle \) | \(<\) | \(\displaystyle \frac \epsilon 2 + \frac \epsilon 2\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \epsilon\) |

$\blacksquare$

## Source of Name

This entry was named for Johann Peter Gustav Lejeune Dirichlet.

## Sources

- 1992: George F. Simmons:
*Calculus Gems*... (previous) ... (next): Chapter $\text {A}.28$: Dirichlet ($1805$ – $1859$) - 2008: David Nelson:
*The Penguin Dictionary of Mathematics*(4th ed.) ... (previous) ... (next): Entry:**Dirichlet's test** - 2014: Christopher Clapham and James Nicholson:
*The Concise Oxford Dictionary of Mathematics*(5th ed.) ... (previous) ... (next): Entry:**Dirichlet's test**