Divergence Operator on Vector Space is Dot Product of Del Operator

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a region of Cartesian $3$-space $\R^3$.

Let $\map {\mathbf V} {x, y, z}$ be a vector field acting over $R$.

Let $\tuple {i, j, k}$ be the standard ordered basis on $\R^3$.


Then

$\operatorname {div} \mathbf V = \nabla \cdot \mathbf V$

where:

$\operatorname {div} \mathbf V $ denotes the divergence of $\mathbf V$
$\nabla$ denotes the del operator.


Proof

We have by definition of divergence of $\mathbf V$:

$\operatorname {div} \mathbf V = \dfrac {\partial V_x} {\partial x} + \dfrac {\partial V_y} {\partial y} + \dfrac {\partial V_z} {\partial z}$

Now:

\(\ds \nabla \cdot \mathbf V\) \(=\) \(\ds \paren {\mathbf i \dfrac \partial {\partial x} + \mathbf j \dfrac \partial {\partial y} + \mathbf k \dfrac \partial {\partial z} } \cdot \paren {V_x \mathbf i + V_y \mathbf j + V_z \mathbf k}\) Definition of Del Operator
\(\ds \) \(=\) \(\ds \dfrac {\partial V_x} {\partial x} + \dfrac {\partial V_y} {\partial y} + \dfrac {\partial V_z} {\partial z}\) Definition of Dot Product

$\blacksquare$


Sources