Divided by Positive Element of Field of Quotients
Jump to navigation
Jump to search
Theorem
Let $\struct {K, +, \circ}$ be the field of quotients of a totally ordered integral domain $\struct {D, +, \circ, \le}$.
Then:
- $\forall z \in K: \exists x, y \in D: z = \dfrac x y, y \in D_{>0}$
Proof
By definition of field of quotients:
- $\forall z \in K: \exists x, y \in D: z = \dfrac x y, y \in D_{\ne 0}$
Suppose $z = x' / y'$ such that $y' \notin D_{>0}$.
Then $y' < 0$ as $D$ is totally ordered.
Then:
\(\ds x' / y'\) | \(=\) | \(\ds x' \circ \paren {y'}^{-1}\) | Definition of Division | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-x'} \circ \paren {-\paren {y'}^{-1} }\) | Product of Ring Negatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-x'} \circ \paren {-y'}^{-1}\) | Negative of Product Inverse | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-x'} / \paren {-y'}\) | Definition of Division |
If $y' < 0$, then $\paren {-y'} > 0$ from Properties of Ordered Ring $(4)$.
So all we need to do is set $x = -x', y = -y'$ and the result follows.
$\blacksquare$