Divisibility by 19

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer expressed in the form:

$n = 100 a + b$

Then $n$ is divisible by $19$ if and only if $a + 4 b$ is divisible by $19$.


Proof

Let $a, b, c \in \Z$.

\(\ds 100 a + b\) \(=\) \(\ds 19 c\)
\(\ds \leadstoandfrom \ \ \) \(\ds 400 a + 4 b\) \(=\) \(\ds 19 \paren {4 c}\) Multiply by $4$
\(\ds \leadstoandfrom \ \ \) \(\ds 399 a + a + 4 b\) \(=\) \(\ds 19 \paren {4 c}\) Separate the $a$ values
\(\ds \leadstoandfrom \ \ \) \(\ds 19 \paren {21 a} + a + 4 b\) \(=\) \(\ds 19 \paren {4 c}\) Factor out $19$
\(\ds \leadstoandfrom \ \ \) \(\ds a + 4 b\) \(=\) \(\ds 19 \paren {4 c - 21 a}\) Subtract

$\blacksquare$


Sources