Division Laws for Groups
Jump to navigation
Jump to search
Theorem
Let $G$ be a group.
Let $a, b, x \in G$.
Then:
- $(1): \quad a x = b \iff x = a^{-1} b$
- $(2): \quad x a = b \iff x = b a^{-1}$
Proof
All derivations can be achieved using applications of the group axioms:
Proof of $(1)$
\(\ds a x\) | \(=\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^{-1} a x\) | \(=\) | \(\ds a^{-1} b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e x\) | \(=\) | \(\ds a^{-1} b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds a^{-1} b\) |
and the converse:
\(\ds x\) | \(=\) | \(\ds a^{-1} b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a x\) | \(=\) | \(\ds a a^{-1} b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a x\) | \(=\) | \(\ds e b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a x\) | \(=\) | \(\ds b\) |
$\blacksquare$
Proof of $(2)$
\(\ds x a\) | \(=\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x a a^{-1}\) | \(=\) | \(\ds b a^{-1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x e\) | \(=\) | \(\ds b a^{-1} b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds b a^{-1}\) |
and the converse:
\(\ds x\) | \(=\) | \(\ds b a^{-1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x a\) | \(=\) | \(\ds b a^{-1} a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x a\) | \(=\) | \(\ds b e\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x a\) | \(=\) | \(\ds b\) |
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 35.2$: Elementary consequences of the group axioms