Division Laws for Groups

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group.

Let $a, b, x \in G$.


Then:

$(1): \quad a x = b \iff x = a^{-1} b$
$(2): \quad x a = b \iff x = b a^{-1}$


Proof

All derivations can be achieved using applications of the group axioms:


Proof of $(1)$

\(\ds a x\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds a^{-1} a x\) \(=\) \(\ds a^{-1} b\)
\(\ds \leadsto \ \ \) \(\ds e x\) \(=\) \(\ds a^{-1} b\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds a^{-1} b\)


and the converse:

\(\ds x\) \(=\) \(\ds a^{-1} b\)
\(\ds \leadsto \ \ \) \(\ds a x\) \(=\) \(\ds a a^{-1} b\)
\(\ds \leadsto \ \ \) \(\ds a x\) \(=\) \(\ds e b\)
\(\ds \leadsto \ \ \) \(\ds a x\) \(=\) \(\ds b\)

$\blacksquare$


Proof of $(2)$

\(\ds x a\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds x a a^{-1}\) \(=\) \(\ds b a^{-1}\)
\(\ds \leadsto \ \ \) \(\ds x e\) \(=\) \(\ds b a^{-1} b\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds b a^{-1}\)


and the converse:

\(\ds x\) \(=\) \(\ds b a^{-1}\)
\(\ds \leadsto \ \ \) \(\ds x a\) \(=\) \(\ds b a^{-1} a\)
\(\ds \leadsto \ \ \) \(\ds x a\) \(=\) \(\ds b e\)
\(\ds \leadsto \ \ \) \(\ds x a\) \(=\) \(\ds b\)

$\blacksquare$


Sources