Divisor of Integer/Examples/6 divides n (n+1) (n+2)

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer.

Then:

$6 \divides n \paren {n + 1} \paren {n + 2}$

where $\divides$ indicates divisibility.


Proof 1

From $3$ divides $n \paren {n + 1} \paren {n + 2}$:

$3 \divides n \paren {n + 1} \paren {n + 2}$

From $2$ divides $n \paren {n + 1}$:

$2 \divides n \paren {n + 1}$

and so:

$2 \divides n \paren {n + 1} \paren {n + 2}$

Hence:

$2 \times 3 = 6 \divides \paren {n + 1} \paren {n + 2}$

$\blacksquare$


Proof 2

Proof by induction:

For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$6 \divides n \paren {n + 1} \paren {n + 2}$


$\map P 0$ is the case:

\(\ds 0 \times 1 \times 2\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 6\) \(\divides\) \(\ds 0 \paren {0 + 1} \paren {0 + 2}\) Integer Divides Zero

Thus $\map P 0$ is seen to hold.


Basis for the Induction

$\map P 1$ is the case:

\(\ds 1 \paren {1 + 1} \paren {1 + 2}\) \(=\) \(\ds 1 \times 2 \times 3\)
\(\ds \) \(=\) \(\ds 6\)
\(\ds \leadsto \ \ \) \(\ds 6\) \(\divides\) \(\ds 1 \paren {1 + 1} \paren {1 + 2}\) Integer Divides Itself

Thus $\map P 1$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is the induction hypothesis:

$6 \divides k \paren {k + 1} \paren {k + 2}$


from which it is to be shown that:

$6 \divides \paren {k + 1} \paren {k + 2} \paren {k + 3}$


Induction Step

This is the induction step:


From the induction hypothesis we have that:

$6 \divides k \paren {k + 1} \paren {k + 2}$

Hence by definition of divisibility, we have:

$(1): \quad \exists r \in \Z: k \paren {k + 1} \paren {k + 2} = 6 r$


From $2$ divides $n \paren {n + 1}$ we have:

$(2): \quad \exists s \in \Z: \paren {k + 1} \paren {k + 2} = 2 s$


\(\ds \paren {k + 1} \paren {k + 2} \paren {k + 3}\) \(=\) \(\ds k \paren {k + 1} \paren {k + 2} + 3 \paren {k + 1} \paren {k + 2}\)
\(\ds \leadsto \ \ \) \(\ds \exists r \in \Z: \, \) \(\ds \paren {k + 1} \paren {k + 2} \paren {k + 3}\) \(=\) \(\ds 6 r + 3 \times 2 s\) from $(1)$ and $(2)$
\(\ds \) \(=\) \(\ds 7 \times 6 r + 6\) algebra
\(\ds \) \(=\) \(\ds 6 \paren {r + s}\) algebra
\(\ds \leadsto \ \ \) \(\ds 6\) \(\divides\) \(\ds \paren {k + 1} \paren {k + 2} \paren {k + 3}\) Definition of Divisor of Integer

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \Z_{\ge 0}: 6 \divides n \paren {n + 1} \paren {n + 2}$

$\blacksquare$