Dot Product Associates with Scalar Multiplication/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\paren {c \mathbf u} \cdot \mathbf v = c \paren {\mathbf u \cdot \mathbf v}$


Proof

\(\ds \paren {c \mathbf u} \cdot \mathbf v\) \(=\) \(\ds \norm {c \mathbf u} \norm {\mathbf v} \cos \angle c \mathbf u, \mathbf v\) Definition of Dot Product
\(\ds \) \(=\) \(\ds \sqrt {\sum_{i \mathop = 1}^n \paren {c u_i}^2} \norm {\mathbf v} \cos \angle c \mathbf u, \mathbf v\) Definition of Vector Length in $\R^n$
\(\ds \) \(=\) \(\ds \sqrt {c^2 \sum_{i \mathop = 1}^n u_i^2} \norm {\mathbf v} \cos \angle \mathbf u, \mathbf v\) $c \mathbf u$ and $\mathbf u$ are in the same direction
\(\ds \) \(=\) \(\ds c \sqrt {\sum_{i \mathop = 1}^n u_i^2} \norm {\mathbf v} \cos \angle \mathbf u, \mathbf v\)
\(\ds \) \(=\) \(\ds c \norm {\mathbf u} \norm {\mathbf v} \cos \angle \mathbf u, \mathbf v\) Definition of Vector Length in $\R^n$
\(\ds \) \(=\) \(\ds c \paren {\mathbf u \cdot \mathbf v}\) Definition of Dot Product

$\blacksquare$