Dot Product with Self is Zero iff Zero Vector

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\mathbf u$ be a vector in the real Euclidean space $\R^n$.

Then:

$\mathbf u \cdot \mathbf u = 0 \iff \mathbf u = \mathbf 0$


Proof 1

\(\ds \mathbf u \cdot \mathbf u\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \sum_{i \mathop = 1}^n u_i^2\) \(=\) \(\ds 0\) Definition of Dot Product
\(\ds \leadstoandfrom \ \ \) \(\ds \forall i: \, \) \(\ds u_i\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \mathbf u\) \(=\) \(\ds \bszero\) Definition of Zero Vector

$\blacksquare$


Proof 2

Let $\mathbf u \cdot \mathbf u = 0$.

Then:

\(\ds 0\) \(=\) \(\ds \norm {\mathbf u }^2 \cos \angle \mathbf u, \mathbf u\) Definition of Dot Product
\(\ds \) \(=\) \(\ds \norm {\mathbf u}^2 \cos 0\)
\(\ds \) \(=\) \(\ds \norm {\mathbf u}^2\)

The only way for this to happen is if:

$\norm {\mathbf u} = 0$

which implies:

$\mathbf u = \mathbf 0$


Now suppose $\mathbf u = \mathbf 0$.

Then:

\(\ds \mathbf u \cdot \mathbf u\) \(=\) \(\ds \mathbf 0 \cdot \mathbf 0\)
\(\ds \) \(=\) \(\ds \norm {\mathbf 0}^2 \cos \angle \mathbf 0, \mathbf 0\)
\(\ds \) \(=\) \(\ds 0\)

$\blacksquare$