Double Angle Formulas/Cosine
Jump to navigation
Jump to search
Theorem
- $\cos 2 \theta = \cos^2 \theta - \sin^2 \theta$
where $\cos$ and $\sin$ denote cosine and sine respectively.
Corollary 1
- $\cos 2 \theta = 2 \cos^2 \theta - 1$
Corollary 2
- $\cos 2 \theta = 1 - 2 \sin^2 \theta$
Corollary 3
- $\cos 2 \theta = \dfrac {1 - \tan^2 \theta} {1 + \tan^2 \theta}$
Corollary 4
- $1 + \cos \theta = 2 \cos^2 \dfrac \theta 2$
Corollary 5
- $1 - \cos \theta = 2 \sin^2 \dfrac \theta 2$
Proof 1
\(\ds \cos 2 \theta + i \sin 2 \theta\) | \(=\) | \(\ds \paren {\cos \theta + i \sin \theta}^2\) | De Moivre's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta + i^2 \sin^2 \theta + 2 i \cos \theta \sin \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta - \sin^2 \theta + 2 i \cos \theta \sin \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cos 2 \theta\) | \(=\) | \(\ds \cos^2 \theta - \sin^2 \theta\) | equating real parts |
$\blacksquare$
Proof 2
\(\ds \cos 2 \theta\) | \(=\) | \(\ds \map \cos {\theta + \theta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos \theta \cos \theta - \sin \theta \sin \theta\) | Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta - \sin^2 \theta\) |
$\blacksquare$
Proof 3
Starting from the right, we have:
\(\ds \cos^2 \theta - \sin^2\theta\) | \(=\) | \(\ds \left({\frac 1 2 \left({e^{i \theta} + e^{-i \theta} }\right)}\right)^2 - \left({\frac 1 {2 i} \left({e^{i \theta} - e^{-i \theta} }\right)}\right)^2\) | Cosine Exponential Formulation, Sine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 4 \left({e^{i \theta} + e^{-i \theta} }\right)^2 + \frac 1 4 \left({e^{i \theta} - e^{-i \theta} }\right)^2\) | $i$ is the imaginary unit | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 4 \left({e^{2 i \theta} + 2 + e^{-2 i \theta} + e^{2 i \theta} - 2 + e^{-2 i \theta} }\right)\) | Square of Sum, Square of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \left({e^{2 i \theta} + e^{-2 i \theta} }\right)\) | Simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos 2 \theta\) | Cosine Exponential Formulation |
$\blacksquare$
Proof 4
Consider an isosceles triangle $\triangle ABC$ with base $BC$, and apex $\angle BAC = 2 \alpha$.
Draw an angle bisector to $\angle BAC$ and name it $AH$.
- $\angle BAH = \angle CAH = \alpha$
From Angle Bisector and Altitude Coincide iff Triangle is Isosceles:
- $AH \perp BC$
From Law of Cosines:
\(\text {(1)}: \quad\) | \(\ds CB^2\) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \cdot \cos 2 \alpha\) |
From Pythagoras's Theorem:
\(\ds AC ^ 2\) | \(=\) | \(\ds CH^2 + AH^2\) | in triangle $\triangle AHC$ | |||||||||||
\(\text {(2.1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds CH^2\) | \(=\) | \(\ds AC^2 - AH^2\) | ||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds AB ^ 2\) | \(=\) | \(\ds BH^2 + AH^2\) | in triangle $\triangle AHB$ | |||||||||||
\(\text {(2.2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds BH^2\) | \(=\) | \(\ds BC^2 - AH^2\) |
By definition of sine:
\(\text {(3.1)}: \quad\) | \(\ds CH\) | \(=\) | \(\ds AC \sin \alpha\) | |||||||||||
\(\text {(3.2)}: \quad\) | \(\ds BH\) | \(=\) | \(\ds AB \sin \alpha\) |
By definition of cosine:
- $AH = AB \cos \alpha = AC \cos \alpha$
So:
\(\text {(4)}: \quad\) | \(\ds AH^2\) | \(=\) | \(\ds AB \cdot AC \cdot \cos^2 \alpha\) | |||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds CH^2\) | \(=\) | \(\ds AC^2 - AH^2\) | $(2.1)$ | |||||||||||
\(\text {(5.1)}: \quad\) | \(\ds \) | \(=\) | \(\ds AC^2 - AB \cdot AC \cdot \cos^2 \alpha\) | assigning $(4)$ | ||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds BH^2\) | \(=\) | \(\ds AB^2 - AH^2\) | $(2.2)$ | |||||||||||
\(\text {(5.2)}: \quad\) | \(\ds \) | \(=\) | \(\ds AB^2 - AB \cdot AC \cdot \cos^2 \alpha\) | assigning $(4)$ |
Now:
\(\ds CB^2\) | \(=\) | \(\ds (CH + BH)^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds CH^2 + BH^2 + 2 \cdot CH \cdot BH\) | Square of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds AC^2 - AB \cdot AC \cdot \cos^2 \alpha + AB^2 - AB \cdot AC \cdot \cos^2 \alpha + 2 \cdot CH \cdot BH\) | assigning $(5.1)$,$(5.2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \cdot \cos^2 \alpha + 2 \cdot CH \cdot BH\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \cdot \cos^2 \alpha + 2 \cdot AB \cdot AC \cdot \sin^2 \alpha\) | assigning $(3.1)$,$(3.2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \paren {\cos^2 \alpha - \sin^2 \alpha}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \cdot \cos 2 \alpha\) | equating to $(1)$ |
Hence we get the equation:
\(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \paren {\cos^2 \alpha - \sin^2 \alpha}\) | \(=\) | \(\ds AC^2 + AB^2 - 2 \cdot AB \cdot AC \cdot \cos 2 \alpha\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cos^2 \alpha - \sin^2 \alpha\) | \(=\) | \(\ds \cos 2 \alpha\) | simplifying |
$\blacksquare$
Also known as
Corollary $1$ and Corollary $2$ are sometimes known as Carnot's Formulas, for Lazare Nicolas Marguerite Carnot.
Also see
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Formulae $(13)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.39$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 16.3 \ (3) \ \text{(iv)}$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cosine
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): double-angle formulae
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): double-angle formulae
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): double-angle formula (in trigonometry)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Double-angle formulae