Double Angle Formulas/Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin 2 \theta = 2 \sin \theta \cos \theta$

where $\sin$ and $\cos$ denote sine and cosine respectively.


Corollary

$\sin 2 \theta = \dfrac {2 \tan \theta} {1 + \tan^2 \theta}$


Proof 1

\(\ds \cos 2 \theta + i \sin 2 \theta\) \(=\) \(\ds \paren {\cos \theta + i \sin \theta}^2\) De Moivre's Formula
\(\ds \) \(=\) \(\ds \cos^2 \theta + i^2 \sin^2 \theta + 2 i \cos \theta \sin \theta\)
\(\ds \) \(=\) \(\ds \cos^2 \theta - \sin^2 \theta + 2 i \cos \theta \sin \theta\)
\(\ds \leadsto \ \ \) \(\ds \sin 2 \theta\) \(=\) \(\ds 2 \cos \theta \sin \theta\) equating imaginary parts

$\blacksquare$


Proof 2

\(\ds \sin 2 \theta\) \(=\) \(\ds \map \sin {\theta + \theta}\)
\(\ds \) \(=\) \(\ds \sin \theta \cos \theta + \cos \theta \sin \theta\) Sine of Sum
\(\ds \) \(=\) \(\ds 2 \sin \theta \cos \theta\)

$\blacksquare$


Proof 3

Double angle sin.png

Consider an isosceles triangle $\triangle ABC$ with base $BC$ and apex $\angle BAC = 2 \alpha$.

Construct the angle bisector to $\angle BAC$ and name it $AH$:

$\angle BAH = \angle CAH = \alpha$

From Bisector of Apex of Isosceles Triangle is Perpendicular to Base:

$AH \perp BC$

From Area of Triangle in Terms of Two Sides and Angle:

\(\ds \map \Area {\triangle BAH}\) \(=\) \(\ds \dfrac {BA \cdot AH \sin \alpha} 2\)
\(\ds \map \Area {\triangle CAH}\) \(=\) \(\ds \dfrac {CA \cdot AH \sin \alpha} 2\)


By definition of sine:

\(\ds AH\) \(=\) \(\ds CA \cos \alpha\)
\(\ds AH\) \(=\) \(\ds BA \cos \alpha\)


and so:

\(\ds \map \Area {\triangle BAH}\) \(=\) \(\ds \dfrac {BA \cdot CA \cos \alpha \sin \alpha} 2\)
\(\ds \map \Area {\triangle CAH}\) \(=\) \(\ds \dfrac {CA \cdot BA \cos \alpha \sin \alpha} 2\)
\(\ds \map \Area {\triangle ABC}\) \(=\) \(\ds \map \Area {\triangle BAH} + \map \Area {\triangle CAH}\)
\(\ds \) \(=\) \(\ds \frac {BA \cdot CA \cos \alpha \sin \alpha} 2 + \frac {CA \cdot BA \cos \alpha \sin \alpha} 2\)
\(\ds \) \(=\) \(\ds BA \cdot CA \cos \alpha \sin \alpha\)
\(\ds \) \(=\) \(\ds \frac {BA \cdot CA \sin 2 \alpha} 2\) Area of Triangle in Terms of Two Sides and Angle ($\triangle ABC$)
\(\ds \leadsto \ \ \) \(\ds \sin 2 \alpha\) \(=\) \(\ds 2 \cos \alpha \sin \alpha\) dividing both sides by $\dfrac {BA \cdot CA} 2$

$\blacksquare$


Proof 4

\(\ds \sin 2 \theta\) \(=\) \(\ds \frac 1 {2 i} \paren {e^{2 i \theta} - e^{-2 i \theta} }\) Euler's Sine Identity
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {e^{i \theta} + e^{-i \theta} } \paren {e^{i \theta} - e^{-i \theta} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds 2 \paren {\frac {e^{i \theta} - e^{-i \theta} } {2 i} \cdot \frac {e^{i \theta} + e^{-i \theta} } 2}\)
\(\ds \) \(=\) \(\ds 2 \sin \theta \cos \theta\) Euler's Sine Identity, Euler's Cosine Identity

$\blacksquare$


Also see


Sources