Double Angle Formulas/Sine/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin 2 \theta = 2 \sin \theta \cos \theta$


Proof

Double angle sin.png

Consider an isosceles triangle $\triangle ABC$ with base $BC$ and apex $\angle BAC = 2 \alpha$.

Construct the angle bisector to $\angle BAC$ and name it $AH$:

$\angle BAH = \angle CAH = \alpha$

From Bisector of Apex of Isosceles Triangle is Perpendicular to Base:

$AH \perp BC$

From Area of Triangle in Terms of Two Sides and Angle:

\(\ds \map \Area {\triangle BAH}\) \(=\) \(\ds \dfrac {BA \cdot AH \sin \alpha} 2\)
\(\ds \map \Area {\triangle CAH}\) \(=\) \(\ds \dfrac {CA \cdot AH \sin \alpha} 2\)


By definition of sine:

\(\ds AH\) \(=\) \(\ds CA \cos \alpha\)
\(\ds AH\) \(=\) \(\ds BA \cos \alpha\)


and so:

\(\ds \map \Area {\triangle BAH}\) \(=\) \(\ds \dfrac {BA \cdot CA \cos \alpha \sin \alpha} 2\)
\(\ds \map \Area {\triangle CAH}\) \(=\) \(\ds \dfrac {CA \cdot BA \cos \alpha \sin \alpha} 2\)
\(\ds \map \Area {\triangle ABC}\) \(=\) \(\ds \map \Area {\triangle BAH} + \map \Area {\triangle CAH}\)
\(\ds \) \(=\) \(\ds \frac {BA \cdot CA \cos \alpha \sin \alpha} 2 + \frac {CA \cdot BA \cos \alpha \sin \alpha} 2\)
\(\ds \) \(=\) \(\ds BA \cdot CA \cos \alpha \sin \alpha\)
\(\ds \) \(=\) \(\ds \frac {BA \cdot CA \sin 2 \alpha} 2\) Area of Triangle in Terms of Two Sides and Angle ($\triangle ABC$)
\(\ds \leadsto \ \ \) \(\ds \sin 2 \alpha\) \(=\) \(\ds 2 \cos \alpha \sin \alpha\) dividing both sides by $\dfrac {BA \cdot CA} 2$

$\blacksquare$