Double Angle Formulas/Sine/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin 2 \theta = 2 \sin \theta \cos \theta$


Proof

\(\ds \sin 2 \theta\) \(=\) \(\ds \frac 1 {2 i} \paren {e^{2 i \theta} - e^{-2 i \theta} }\) Euler's Sine Identity
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {e^{i \theta} + e^{-i \theta} } \paren {e^{i \theta} - e^{-i \theta} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds 2 \paren {\frac {e^{i \theta} - e^{-i \theta} } {2 i} \cdot \frac {e^{i \theta} + e^{-i \theta} } 2}\)
\(\ds \) \(=\) \(\ds 2 \sin \theta \cos \theta\) Euler's Sine Identity, Euler's Cosine Identity

$\blacksquare$