# Double Negation/Double Negation Elimination

## Contents

## Theorem

The rule of **double negation elimination** is a valid deduction sequent in propositional logic.

### Proof Rule

- If we can conclude $\neg \neg \phi$, then we may infer $\phi$.

### Sequent Form

- $\neg \neg p \vdash p$

## Also see

## Double Negation from Intuitionistic Perspective

The intuitionist school rejects the Law of the Excluded Middle as a valid logical axiom. This in turn invalidates the Law of Double Negation Elimination from the system of intuitionistic propositional logic.

Hence a difference is perceived between Double Negation Elimination and Double Negation Introduction, whereby it can be seen from the Principle of Non-Contradiction that if a statement is true, then it is not the case that it is false. However, if all we know is that a statement is not false, we can not be certain that it *is* actually true without accepting that there are only two possible truth values. Such distinctions may be important when considering, for example, multi-value logic.

However, when analysing logic from a purely classical standpoint, it is common and acceptable to make the simplification of taking just one Double Negation rule:

- $p \dashv \vdash \neg \neg p$

## Sources

- 1959: A.H. Basson and D.J. O'Connor:
*Introduction to Symbolic Logic*(3rd ed.) ... (previous) ... (next): $\S 2.3$: Basic Truth-Tables of the Propositional Calculus