Duality Principle (Projective Geometry)

From ProofWiki
Jump to navigation Jump to search

Theorem

Principle of Duality in the Plane

Let $P$ be a theorem of projective geometry proven using the propositions of incidence.

Let $Q$ be the statement created from $P$ by interchanging:

$(1): \quad$ the terms point and (straight) line
$(2): \quad$ the terms collinear (of points) and concurrent (of lines)
$(3): \quad$ the terms lie on and intersect at

and so on.

Then $Q$ is also a theorem of projective geometry.


Principle of Duality in Space

Let $P$ be a theorem of projective geometry proven using the propositions of incidence.

Let $Q$ be the statement created from $P$ by interchanging:

$(1) \quad$ the terms point and plane
$(2) \quad$ the terms lie on and intersect at

and so on.

Then $Q$ is also a theorem of projective geometry.


Also known as

A Duality Principle is also known as a Principle of Duality.


Sources