Eigenvalues of Hermitian Operator are Real
Jump to navigation
Jump to search
Theorem
Let $\HH$ be a Hilbert space.
Let $A \in \map B \HH$ be a Hermitian operator.
Then all eigenvalues of $A$ are real.
Proof
Let $\lambda$ be an eigenvalue of $A$.
Let $v \in H$ be an eigenvector for $\lambda$.
That is:
- $A v = \lambda v$
Now compute:
\(\ds \lambda \innerprod v v\) | \(=\) | \(\ds \innerprod {\lambda v} v\) | Property $(2)$ of an inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {A v} v\) | $v$ is an eigenvector | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod v {A v}\) | $A$ is Hermitian | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {\innerprod {A v} v}\) | Property $(1)$ of an inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {\innerprod {\lambda v} v}\) | $v$ is an eigenvector | |||||||||||
\(\ds \) | \(=\) | \(\ds \bar \lambda \innerprod v v\) | Properties $(2)$, $(4)$ of an inner product |
Now $v$, being an eigenvector, is non-zero.
By property $(5)$ of an inner product, this implies $\innerprod v v \ne 0$.
Thence, dividing out $\innerprod v v$, obtain $\lambda = \bar \lambda$.
From Complex Number equals Conjugate iff Wholly Real, $\lambda \in \R$.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {II}.5.8$