Element has Idempotent Power in Finite Semigroup
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a finite semigroup.
For every element in $\struct {S, \circ}$, there is a power of that element which is idempotent.
That is:
- $\forall x \in S: \exists i \in \N: x^i = x^i \circ x^i$
Proof
From Finite Semigroup Equal Elements for Different Powers, we have:
- $\forall x \in S: \exists m, n \in \N: m \ne n: x^m = x^n$
Let $m > n$.
Let $n = k, m = k + l$.
Then:
- $\forall x \in S: \exists k, l \in \N: x^k = x^{k + l}$
Now we show that:
- $x^k = x^{k + l} \implies x^{k l} = x^{k l} \circ x^{k l}$
That is, that $x^{k l}$ is idempotent.
First:
\(\ds x^k\) | \(=\) | \(\ds x^{k + l}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^k \circ x^l\) | \(=\) | \(\ds x^{k + l} \circ x^l\) | both sides ${} \circ x^l$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{k + l}\) | \(=\) | \(\ds x^{k + 2 l}\) | Index Laws for Semigroup: Sum of Indices | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^k\) | \(=\) | \(\ds x^{k + 2 l}\) | as $x^k = x^{k + l}$ |
From here we can easily prove by induction that:
- $\forall n \in \N: x^k = x^{k + n l}$
In particular:
- $x^k = x^{k + k l} = x^{k \paren {l + 1} }$
There are two cases to consider:
- $(1): \quad$ If $l = 1$, then $x^k = x^{k \paren {l + 1} } = x^{2 k} = x^k \circ x^k$, and $x^{k l} = x^k$ is idempotent.
- $(2): \quad$ If $l > 1$, then:
\(\ds x^k\) | \(=\) | \(\ds x^{k + k l}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^{k \paren {l + 1} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^k \circ x^{k \paren {l - 1} }\) | \(=\) | \(\ds x^{k \paren {l + 1} } \circ x^{k \paren {l - 1} }\) | both sides ${} \circ x^{k \paren {l - 1} }$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{k + k l - k}\) | \(=\) | \(\ds x^{kl + k + k l - k}\) | Index Laws for Semigroup: Sum of Indices | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{k l}\) | \(=\) | \(\ds x^{k l + k l}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds x^{k l} \circ x^{k l}\) |
and again, $x^{k l}$ is idempotent.
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $5$: Semigroups: Exercise $4$