Elementary Symmetric Function/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of Elementary Symmetric Function

Example: $m = 0$

$\map {e_0} {\set {x_1, x_2, \ldots, x_n} } = 1$


Example: $m = 1$

\(\ds e_1 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) \(=\) \(\ds x_1 + x_2 + \cdots + x_n\)


Example: $m = 2$

\(\ds e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) \(=\) \(\ds x_1 x_2 + x_1 x_3 + \cdots + x_1 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_2 x_3 + \cdots + x_2 x_n\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \cdots\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds x_{n - 1} x_n\)


Example: $m = n$

\(\ds \map {e_n} {\set {x_1, x_2, \ldots, x_n} }\) \(=\) \(\ds x_1 x_2 \cdots x_n\)


Example: $m > n$

Let $m > n$.

Then:

\(\ds \map {e_m} {\set {x_1, x_2, \ldots, x_n} }\) \(=\) \(\ds 0\)


Example: Monic polynomial coefficients

Let $\set {x_1, x_2, \ldots, x_n}$ be a set of real or complex values, not required to be unique.

The expansion of the monic polynomial in variable $x$ with roots $\set {x_1, x_2, \ldots, x_n}$ has coefficients which are parity operators times an elementary symmetric function:

$\ds \prod_{j \mathop = 1}^n \paren {x - x_j} = x^n - \map {e_1} {\set {x_1, \ldots, x_n} } x^{n - 1} + \map {e_2} {\set {x_1, \ldots, x_n} } x^{n - 2} - \dotsb + \paren {-1}^n \map {e_n} {\set {x_1, \ldots, x_n} }$