Elementary Symmetric Function/Examples
Jump to navigation
Jump to search
Examples of Elementary Symmetric Function
Example: $m = 0$
- $\map {e_0} {\set {x_1, x_2, \ldots, x_n} } = 1$
Example: $m = 1$
\(\ds e_1 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) | \(=\) | \(\ds x_1 + x_2 + \cdots + x_n\) |
Example: $m = 2$
\(\ds e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)\) | \(=\) | \(\ds x_1 x_2 + x_1 x_3 + \cdots + x_1 x_n\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds x_2 x_3 + \cdots + x_2 x_n\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \cdots\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds x_{n - 1} x_n\) |
Example: $m = n$
\(\ds \map {e_n} {\set {x_1, x_2, \ldots, x_n} }\) | \(=\) | \(\ds x_1 x_2 \cdots x_n\) |
Example: $m > n$
Let $m > n$.
Then:
\(\ds \map {e_m} {\set {x_1, x_2, \ldots, x_n} }\) | \(=\) | \(\ds 0\) |
Example: Monic polynomial coefficients
Let $\set {x_1, x_2, \ldots, x_n}$ be a set of real or complex values, not required to be unique.
The expansion of the monic polynomial in variable $x$ with roots $\set {x_1, x_2, \ldots, x_n}$ has coefficients which are sign factors times an elementary symmetric function:
- $\ds \prod_{j \mathop = 1}^n \paren {x - x_j} = x^n - \map {e_1} {\set {x_1, \ldots, x_n} } x^{n - 1} + \map {e_2} {\set {x_1, \ldots, x_n} } x^{n - 2} + \dotsb + \paren {-1}^n \map {e_n} {\set {x_1, \ldots, x_n} }$