Equal Set Differences iff Equal Intersections
Jump to navigation
Jump to search
Theorem
- $R \setminus S = R \setminus T \iff R \cap S = R \cap T$
Proof 1
\(\ds R \setminus S\) | \(=\) | \(\ds R \setminus T\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \set {x \in R: x \notin S}\) | \(=\) | \(\ds \set {x \in R: x \notin T}\) | Definition of Set Difference | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \forall x \in R: \, \) | \(\ds x \notin S\) | \(\iff\) | \(\ds x \notin T\) | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \forall x \in R: \, \) | \(\ds x \in S\) | \(\iff\) | \(\ds x \in T\) | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \set {\paren {x \in R} \land \paren {x \in S} }\) | \(=\) | \(\ds \set {\paren {x \in R} \land \paren {x \in T} }\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds R \cap S\) | \(=\) | \(\ds R \cap T\) | Definition of Set Intersection |
$\blacksquare$
Proof 2
From Set Difference and Intersection form Partition:
- $\paren {R \setminus S} \cup \paren {R \cap S} = R = \paren {R \setminus T} \cup \paren {R \cap T}$
- $\paren {R \cap S} \cap \paren {R \setminus S} = \O = \paren {R \cap T} \cap \paren {R \setminus T}$
whatever $R, S, T$ might be.
Let $R \setminus S = R \setminus T$.
Then:
\(\ds \paren {\paren {R \setminus S} \cup \paren {R \cap S} } \setminus \paren {R \setminus S}\) | \(=\) | \(\ds \paren {\paren {R \setminus T} \cup \paren {R \cap T} } \setminus \paren {R \setminus T}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {R \cap S} \setminus \paren {R \setminus S}\) | \(=\) | \(\ds \paren {R \cap T} \setminus \paren {R \setminus T}\) | Set Difference with Union is Set Difference |
Now, we have from Set Difference with Disjoint Set:
- $S \cap T = \O \iff S \setminus T = S$
and so:
- $\paren {R \cap S} \setminus \paren {R \setminus S} = R \cap S$
and:
- $\paren {R \cap T} \setminus \paren {R \setminus T} = R \cap T$
So:
- $R \cap S = R \cap T$
We can use exactly the same reasoning if we assume $R \cap S = R \cap T$:
\(\ds \paren {\paren {R \setminus S} \cup \paren {R \cap S} } \setminus \paren {R \cap S}\) | \(=\) | \(\ds \paren {\paren {R \setminus T} \cup \paren {R \cap T} } \setminus \paren {R \cap T}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {R \setminus S} \setminus \paren {R \cap S}\) | \(=\) | \(\ds \paren {R \setminus T} \setminus \paren {R \cap T}\) | Set Difference with Union is Set Difference |
and then because of Set Difference with Disjoint Set as above:
- $\paren {R \setminus S} \setminus \paren {R \cap S} = R \setminus S$
and:
- $\paren {R \setminus T} \setminus \paren {R \cap T} = R \setminus T$
So:
- $R \setminus S = R \setminus T$
$\blacksquare$
Sources
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $1$: The Notation and Terminology of Set Theory: $\S 8 \ \text{(c)}$