# Equality of Cartesian Products

Jump to navigation
Jump to search

## Theorem

Let $A, B, C, D$ be nonempty sets.

Then:

- $A \times B = C \times D \iff A = C \land B = D$

where $\times$ denotes cartesian product.

## Proof

If $A = C$ and $B = D$, it is immediate that $A \times B = C \times D$.

Now suppose that $A \times B = C \times D$.

By definition of Cartesian product:

\(\displaystyle x \in A, y \in B\) | \(\iff\) | \(\displaystyle \tuple {x, y} \in A \times B\) | |||||||||||

\(\displaystyle \) | \(\iff\) | \(\displaystyle \tuple {x, y} \in C \times D\) | Definition of Set Equality | ||||||||||

\(\displaystyle \) | \(\iff\) | \(\displaystyle x \in C, y \in D\) |

It follows that $x \in A$ if and only if $x \in C$, and so $A = C$.

Similarly, $y \in B$ if and only if $y \in D$, hence $B = D$.

The result follows.

$\blacksquare$