Equality of Vector Quantities
Jump to navigation
Jump to search
Theorem
Two vector quantities are equal if and only if they have the same magnitude and direction.
That is:
- $\mathbf a = \mathbf b \iff \paren {\size {\mathbf a} = \size {\mathbf b} \land \hat {\mathbf a} = \hat {\mathbf b} }$
where:
- $\hat {\mathbf a}$ denotes the unit vector in the direction of $\mathbf a$
- $\size {\mathbf a}$ denotes the magnitude of $\mathbf a$.
Proof
Let $\mathbf a$ and $\mathbf b$ be expressed in component form:
\(\ds \mathbf a\) | \(=\) | \(\ds a_1 \mathbf e_1 + a_2 \mathbf e_2 + \cdots + a_n \mathbf e_n\) | ||||||||||||
\(\ds \mathbf b\) | \(=\) | \(\ds b_1 \mathbf e_1 + b_2 \mathbf e_2 + \cdots + b_n \mathbf e_n\) |
where $\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n$ denote the unit vectors in the positive directions of the coordinate axes of the Cartesian coordinate space into which $\mathbf a$ has been embedded.
Thus $\mathbf a$ and $\mathbf b$ can be expressed as:
\(\ds \mathbf a\) | \(=\) | \(\ds \tuple {a_1, a_2, \ldots, a_n}\) | ||||||||||||
\(\ds \mathbf b\) | \(=\) | \(\ds \tuple {b_1, b_2, \ldots, b_n}\) |
We have that:
\(\ds \size {\mathbf a}\) | \(=\) | \(\ds \size {\tuple {a_1, a_2, \ldots, a_n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\paren {a_1^2 + a_2^2 + \ldots + a_n^2} }\) |
and similarly:
\(\ds \size {\mathbf b}\) | \(=\) | \(\ds \size {\tuple {b_1, b_2, \ldots, b_n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\paren {b_1^2 + b_2^2 + \ldots + b_n^2} }\) |
Also:
\(\ds \hat {\mathbf a}\) | \(=\) | \(\ds \widehat {\tuple {a_1, a_2, \ldots, a_n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {\sqrt {\paren {a_1^2 + a_2^2 + \ldots + a_n^2} } } \mathbf a\) |
and similarly:
\(\ds \hat {\mathbf b}\) | \(=\) | \(\ds \widehat {\tuple {b_1, b_2, \ldots, b_n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {\sqrt {\paren {b_1^2 + b_2^2 + \ldots + b_n^2} } }\) |
Let $\mathbf a = \mathbf b$.
Then by Equality of Ordered Tuples:
- $(1): \quad a_1 = b_1, a_2 = b_2, \ldots a_n = b_n$
Then:
\(\ds \size {\mathbf a}\) | \(=\) | \(\ds \sqrt {\paren {a_1^2 + a_2^2 + \ldots + a_n^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\paren {b_1^2 + b_2^2 + \ldots + b_n^2} }\) | from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\mathbf b}\) |
and:
\(\ds \hat {\mathbf a}\) | \(=\) | \(\ds \dfrac 1 {\sqrt {\paren {a_1^2 + a_2^2 + \ldots + a_n^2} } } \mathbf a\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {\sqrt {\paren {b_1^2 + b_2^2 + \ldots + b_n^2} } } \mathbf b\) | from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \hat {\mathbf b}\) |
![]() | This needs considerable tedious hard slog to complete it. The other direction now needs to be attended to. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1921: C.E. Weatherburn: Elementary Vector Analysis ... (previous) ... (next): Chapter $\text I$. Addition and Subtraction of Vectors. Centroids: Definitions: $3$. Definitions of terms
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text I$: Definitions. Elements of Vector Algebra: $2$. Graphical Representation of Vectors
- 1961: I.M. Gel'fand: Lectures on Linear Algebra (2nd ed.) ... (previous) ... (next): $\S 1$: $n$-Dimensional vector spaces
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 26$. Vector Spaces and Modules
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Fundamental Definitions: $1.$