Equivalence Class is Unique

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathcal R$ be an equivalence relation on $S$.


For each $x \in S$, the one and only one $\mathcal R$-class to which $x$ belongs is $\eqclass x {\mathcal R}$.


Proof

This follows directly from the Fundamental Theorem on Equivalence Relations: the set of $\mathcal R$-classes forms a partition of $S$.

$\blacksquare$


Sources