Equivalence Relation on Integers Modulo 5 induced by Squaring/Number of Equivalence Classes

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\beta$ denote the relation defined on the integers $\Z$ by:

$\forall x, y \in \Z: x \mathrel \beta y \iff x^2 \equiv y^2 \pmod 5$

We have that $\beta$ is an equivalence relation.


The number of distinct $\beta$-equivalence classes is $3$:

\(\ds \eqclass 0 \beta\) \(\) \(\ds \)
\(\ds \eqclass 1 \beta\) \(=\) \(\ds \eqclass 4 \beta\)
\(\ds \eqclass 2 \beta\) \(=\) \(\ds \eqclass 3 \beta\)


Proof

That $\beta$ is an equivalence relation is proved in Equivalence Relation on Integers Modulo 5 induced by Squaring.


The set of residue classes modulo $5$ is:

$\set {\eqclass 0 5, \eqclass 1 5, \eqclass 2 5, \eqclass 3 5, \eqclass 4 5}$


Then:

\(\ds 0 \times 0\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \eqclass 0 5 \times_5 \eqclass 0 5\) \(=\) \(\ds \eqclass 0 5\)
\(\ds 1 \times 1\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds \eqclass 1 5 \times_5 \eqclass 1 5\) \(=\) \(\ds \eqclass 1 5\)
\(\ds 2 \times 2\) \(=\) \(\ds 4\)
\(\ds \leadsto \ \ \) \(\ds \eqclass 2 5 \times_5 \eqclass 2 5\) \(=\) \(\ds \eqclass 4 5\)
\(\ds 3 \times 3\) \(=\) \(\ds 9\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds \eqclass 3 5 \times_5 \eqclass 3 5\) \(=\) \(\ds \eqclass 4 5\)
\(\ds 4 \times 4\) \(=\) \(\ds 16\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds \eqclass 4 5 \times_5 \eqclass 4 5\) \(=\) \(\ds \eqclass 1 5\)


Thus we have that:

$\eqclass 1 5^2 = \eqclass 4 5^2 = \eqclass 1 \beta$
$\eqclass 2 5^2 = \eqclass 3 5^2 = \eqclass 2 \beta$

Hence the result.

$\blacksquare$


Sources