Equivalence of Definitions of Absolute Value Function
Theorem
The following definitions of the concept of Absolute Value are equivalent:
Definition 1
Let $x \in \R$ be a real number.
The absolute value of $x$ is denoted $\size x$, and is defined using the usual ordering on the real numbers as follows:
- $\size x = \begin{cases} x & : x > 0 \\ 0 & : x = 0 \\ -x & : x < 0 \end{cases}$
Definition 2
Let $x \in \R$ be a real number.
The absolute value of $x$ is denoted $\size x$, and is defined as:
- $\size x = +\sqrt {x^2}$
where $+\sqrt {x^2}$ is the positive square root of $x^2$.
Proof
Definition 1 implies Definition 2
Let $f: \R \to \R$ be the function defined as:
- $\forall x \in \R: \map f x = \begin{cases}
x & : x > 0 \\ 0 & : x = 0 \\ -x & : x < 0 \end{cases}$
Let $x > 0$.
We have that:
\(\ds \paren {-x}^2\) | \(=\) | \(\ds \paren {-1}^2 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds +\sqrt {\paren {-x}^2}\) | \(=\) | \(\ds x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds +\sqrt {x^2}\) |
Thus $\map f x = +\sqrt {x^2}$
$\Box$
Definition 2 implies Definition 1
Let $f: \R \to \R$ be the function defined as:
- $\forall x \in \R: \map f x = +\sqrt {x^2}$
Let $x > 0$.
Then by definition of square and square root:
- $+\sqrt {x^2} = x$
Let $x = 0$.
Then $+\sqrt {0^2} = 0$.
Let $x < 0$.
Thus let $x = -y$.
Then:
- $+\sqrt {\paren {-y}^2} = y = -x$
$\blacksquare$
Sources
- 1964: William K. Smith: Limits and Continuity ... (previous) ... (next): $\S 2.2$: Functions: Exercise $\text{B} \ 1 \ \text{(d)}$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.14$: Modulus