Equivalence of Definitions of Antisymmetric Relation (Class Theory)

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Antisymmetric Relation in the context of Class Theory are equivalent:

Definition 1

$\RR$ is antisymmetric if and only if:

$\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR \implies x = y$

that is:

$\set {\tuple {x, y}, \tuple {y, x} } \subseteq \RR \implies x = y$

Definition 2

$\RR$ is antisymmetric if and only if:

$\tuple {x, y} \in \RR \land x \ne y \implies \tuple {y, x} \notin \RR$


Proof

Definition 1 implies Definition 2

Let $\RR$ be a relation which fulfils the condition:

$\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR \implies x = y$


Let $\tuple {x, y} \in \RR$ such that $x \ne y$.

Aiming for a contradiction, suppose that $\tuple {y, x} \in \RR$.

Then $\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR$.

Then by hypothesis this implies that $x = y$.

From this contradiction it is concluded that $\tuple {y, x} \notin \RR$.


It follows that the condition:

$\tuple {x, y} \in \RR \land x \ne y \implies \tuple {y, x} \notin \RR$

holds for $\RR$.

$\Box$


Definition 2 implies Definition 1

Let $\RR$ be a relation which fulfils the condition:

$\tuple {x, y} \in \RR \land x \ne y \implies \tuple {y, x} \notin \RR$


Let $\tuple {x, y} \in \RR$ such that $\tuple {y, x} \in \RR$ also.

Aiming for a contradiction, suppose that $x \ne y$.

Then by hypothesis this implies that $\tuple {y, x} \notin \RR$.

From this contradiction it is concluded that $\tuple {y, x} \notin \RR$.


It follows that the condition:

$\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR \implies x = y$

holds for $\RR$.

$\blacksquare$