Equivalence of Definitions of Boolean Algebra

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Boolean Algebra are equivalent:

Definition 1

\((\text {BA}_1 0)\)   $:$   $S$ is closed under $\vee$, $\wedge$ and $\neg$      
\((\text {BA}_1 1)\)   $:$   Both $\vee$ and $\wedge$ are commutative      
\((\text {BA}_1 2)\)   $:$   Both $\vee$ and $\wedge$ distribute over the other      
\((\text {BA}_1 3)\)   $:$   Both $\vee$ and $\wedge$ have identities $\bot$ and $\top$ respectively      
\((\text {BA}_1 4)\)   $:$   $\forall a \in S: a \vee \neg a = \top, a \wedge \neg a = \bot$      

Definition 2

\((\text {BA}_2 0)\)   $:$   Closure:      \(\ds \forall a, b \in S:\) \(\ds a \vee b \in S \)      
\(\ds a \wedge b \in S \)      
\(\ds \neg a \in S \)      
\((\text {BA}_2 1)\)   $:$   Commutativity:      \(\ds \forall a, b \in S:\) \(\ds a \vee b = b \vee a \)      
\(\ds a \wedge b = b \wedge a \)      
\((\text {BA}_2 2)\)   $:$   Associativity:      \(\ds \forall a, b, c \in S:\) \(\ds a \vee \paren {b \vee c} = \paren {a \vee b} \vee c \)      
\(\ds a \wedge \paren {b \wedge c} = \paren {a \wedge b} \wedge c \)      
\((\text {BA}_2 3)\)   $:$   Absorption Laws:      \(\ds \forall a, b \in S:\) \(\ds \paren {a \wedge b} \vee b = b \)      
\(\ds \paren {a \vee b} \wedge b = b \)      
\((\text {BA}_2 4)\)   $:$   Distributivity:      \(\ds \forall a, b, c \in S:\) \(\ds a \wedge \paren {b \vee c} = \paren {a \wedge b} \vee \paren {a \wedge c} \)      
\(\ds a \vee \paren {b \wedge c} = \paren {a \vee b} \wedge \paren {a \vee c} \)      
\((\text {BA}_2 5)\)   $:$   Identity Elements:      \(\ds \forall a, b \in S:\) \(\ds \paren {a \wedge \neg a} \vee b = b \)      
\(\ds \paren {a \vee \neg a} \wedge b = b \)      


Proof

Definition 1 implies Definition 2

Let $\struct {S, \vee, \wedge, \neg}$ be an algebraic system which satisfies the criteria of Definition 1.


Boolean Algebra Axiom $(\text {BA}_2 0)$: Closure

From Boolean Algebra Axiom $(\text {BA}_1 0)$: Closure, we have that $S$ is closed under $\vee$, $\wedge$ and $\neg$.

That is:

\(\ds \forall a, b \in S: \, \) \(\ds a \vee b\) \(\in\) \(\ds S\)
\(\ds a \wedge b\) \(\in\) \(\ds S\)
\(\ds \neg a\) \(\in\) \(\ds S\)

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity

From Boolean Algebra Axiom $(\text {BA}_1 1)$: Commutativity, we have that $\vee$ and $\wedge$ are commutative on $S$.

That is:

\(\ds \forall a, b \in S: \, \) \(\ds a \vee b\) \(=\) \(\ds b \vee a\)
\(\ds a \wedge b\) \(=\) \(\ds b \wedge a\)

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 2)$: Associativity

From Operations of Boolean Algebra are Associative:

\(\ds \forall a, b, c \in S: \, \) \(\ds a \vee \paren {b \vee c}\) \(=\) \(\ds \paren {a \vee b} \vee c\)
\(\ds a \wedge \paren {b \wedge c}\) \(=\) \(\ds \paren {a \wedge b} \wedge c\)

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 3)$: Absorption Laws

From Absorption Laws (Boolean Algebras):

\(\ds \forall a, b \in S: \, \) \(\ds a\) \(=\) \(\ds a \vee \paren {a \wedge b}\)
\(\ds a\) \(=\) \(\ds a \wedge \paren {a \vee b}\)


The specific format in which these results are expressed in Boolean Algebra Axiom $(\text {BA}_2 3)$: Absorption Laws follow from Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity: $\vee$ and $\wedge$ are commutative on $S$.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 4)$: Distributivity

From Boolean Algebra Axiom $(\text {BA}_1 2)$: Distributivity, we have that both $\vee$ and $\wedge$ distribute over the other.

Hence:

\(\ds \forall a, b, c \in S: \, \) \(\ds a \wedge \paren {b \vee c}\) \(=\) \(\ds \paren {a \wedge b} \vee \paren {a \wedge c}\)
\(\ds a \vee \paren {b \wedge c}\) \(=\) \(\ds \paren {a \vee b} \wedge \paren {a \vee c}\)

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 5)$: Identity Elements

We have:

\(\ds \paren {a \wedge \neg a} \vee b\) \(=\) \(\ds \bot \vee b\) Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements
\(\ds \) \(=\) \(\ds b\) Boolean Algebra Axiom $(\text {BA}_1 3)$: Identity Elements


\(\ds \paren {a \vee \neg a} \wedge b\) \(=\) \(\ds \top \wedge b\) Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements
\(\ds \) \(=\) \(\ds b\) Boolean Algebra Axiom $(\text {BA}_1 3)$: Identity Elements


All axioms are fulfilled.

$\Box$


Definition 2 implies Definition 1

Let $\struct {S, \vee, \wedge, \neg}$ be an algebraic system which satisfies the criteria of Definition 2.


Boolean Algebra Axiom $(\text {BA}_1 0)$: Closure

From Boolean Algebra Axiom $(\text {BA}_2 0)$: Closure:

\(\ds \forall a, b \in S: \, \) \(\ds a \vee b\) \(\in\) \(\ds S\)
\(\ds a \wedge b\) \(\in\) \(\ds S\)
\(\ds \neg a\) \(\in\) \(\ds S\)


That is, $S$ is closed under $\vee$, $\wedge$ and $\neg$.

$\Box$


Boolean Algebra Axiom $(\text {BA}_1 1)$: Commutativity

From Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity:

\(\ds \forall a, b \in S: \, \) \(\ds a \vee b\) \(=\) \(\ds b \vee a\)
\(\ds a \wedge b\) \(=\) \(\ds b \wedge a\)

That is, $\vee$ and $\wedge$ are commutative on $S$.

$\Box$


Boolean Algebra Axiom $(\text {BA}_1 2)$: Distributivity

From Boolean Algebra Axiom $(\text {BA}_2 4)$: Distributivity:

\(\ds \forall a, b, c \in S: \, \) \(\ds a \wedge \paren {b \vee c}\) \(=\) \(\ds \paren {a \wedge b} \vee \paren {a \wedge c}\)
\(\ds a \vee \paren {b \wedge c}\) \(=\) \(\ds \paren {a \vee b} \wedge \paren {a \vee c}\)


From Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity, we have that $\vee$ and $\wedge$ are commutative on $S$, and so:

\(\ds \forall a, b, c \in S: \, \) \(\ds \paren {a \vee b} \wedge c\) \(=\) \(\ds \paren {a \wedge c} \vee \paren {b \wedge c}\)
\(\ds \paren {a \wedge b} \vee c\) \(=\) \(\ds \paren {a \vee c} \wedge \paren {b \vee c}\)

That is, both $\vee$ and $\wedge$ distribute over the other.

$\Box$


Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements

From Meet with Complement is Bottom:

$\exists \bot \in S: \forall a \in S: a \wedge \neg a = \bot$

From Join with Complement is Top:

$\exists \top \in S: \forall a \in S: a \vee \neg a = \top$

These elements $\bot$ and $\top$ are the only elements of $S$ which have these properties.

$\Box$


Boolean Algebra Axiom $(\text {BA}_1 3)$: Identity Elements

We have demonstrated Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements above.

Then:

\(\ds \forall a, b \in S: \, \) \(\ds \bot \vee b\) \(=\) \(\ds \paren {a \wedge \neg a} \vee b\) Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements
\(\ds \) \(=\) \(\ds b\) Boolean Algebra Axiom $(\text {BA}_2 5)$: Identity Elements
\(\ds \forall a, b \in S: \, \) \(\ds \top \wedge b\) \(=\) \(\ds \paren {a \vee \neg a} \wedge b\) Boolean Algebra Axiom $(\text {BA}_1 4)$: Complements
\(\ds \) \(=\) \(\ds b\) Boolean Algebra Axiom $(\text {BA}_2 5)$: Identity Elements

From Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity, we have that $\vee$ and $\wedge$ are commutative on $S$, and so:

\(\ds \forall b \in S: \, \) \(\ds b \vee \bot\) \(=\) \(\ds b\)
\(\ds b \wedge \top\) \(=\) \(\ds b\)

That is:

$\bot$ is an identity element for $\vee$
$\top$ is an identity element for $\wedge$.

$\Box$


All axioms are fulfilled.

$\Box$


Hence the result.

$\blacksquare$