Equivalence of Definitions of Complete Elliptic Integral of the Second Kind

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Complete Elliptic Integral of the Second Kind are equivalent:

Definition 1

$\ds \map E k = \int \limits_0^{\pi / 2} \sqrt {1 - k^2 \sin^2 \phi} \rd \phi$

is the complete elliptic integral of the second kind, and is a function of $k$, defined on the interval $0 < k < 1$.

Definition 2

$\ds \map E k = \int \limits_0^1 \dfrac {\sqrt {1 - k^2 v^2} } {\sqrt {1 - v^2} } \rd v$

is the complete elliptic integral of the second kind, and is a function of $k$, defined on the interval $0 < k < 1$.


Proof

Let $\map E k$ be the complete elliptic integral of the second kind by definition $1$.


Let $v := \sin \phi$.

Then we have:

\(\ds \dfrac {\d v} {\d \phi}\) \(=\) \(\ds \cos \phi\) Derivative of Sine Function
\(\ds \phi\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 0\)
\(\ds \phi\) \(=\) \(\ds \dfrac \pi 2\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 1\)


Hence:

\(\ds \map E k\) \(=\) \(\ds \int \limits_0^{\pi / 2} \sqrt {1 - k^2 \sin^2 \phi} \rd \phi\) Definition 1 of Complete Elliptic Integral of the Second Kind
\(\ds \) \(=\) \(\ds \int \limits_0^1 \sqrt {1 - k^2 \sin^2 \phi} \frac {\d v} {\cos \phi}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int \limits_0^1 \sqrt {1 - k^2 \sin^2 \phi} \frac {\d v} {\sqrt {1 - \sin^2 \phi} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int \limits_0^1 \dfrac {\sqrt {1 - k^2 v^2} } {\sqrt {1 - v^2} } \rd v\) substituting for $v$


Thus $\map E k$ is the complete elliptic integral of the second kind by definition $2$.

$\blacksquare$