Equivalence of Definitions of Complete Elliptic Integral of the Third Kind

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Complete Elliptic Integral of the Third Kind are equivalent:

Definition 1

$\ds \map \Pi {k, n} = \int \limits_0^{\pi / 2} \frac {\d \phi} {\paren {1 + n \sin^2 \phi} \sqrt {1 - k^2 \sin^2 \phi} }$

is the complete elliptic integral of the third kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$n \in \Z$

Definition 2

$\ds \map \Pi {k, n} = \int \limits_0^1 \frac {\d v} {\paren {1 + n v^2} \sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }$

is the complete elliptic integral of the third kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$n \in \Z$


Proof

Let $\map \Pi {k, n}$ be the complete elliptic integral of the third kind by definition $1$.


Let $v := \sin \phi$.

Then we have:

\(\ds \dfrac {\d v} {\d \phi}\) \(=\) \(\ds \cos \phi\) Derivative of Sine Function
\(\ds \phi\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 0\)
\(\ds \phi\) \(=\) \(\ds \dfrac \pi 2\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds 1\)


Hence:

\(\ds \map \Pi {k, n}\) \(=\) \(\ds \int \limits_0^{\pi / 2} \frac {\d \phi} {\paren {1 + n \sin^2 \phi} \sqrt {1 - k^2 \sin^2 \phi} }\) Definition 1 of Complete Elliptic Integral of the Third Kind
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\paren {1 + n \sin^2 \phi} \cos \phi \sqrt {1 - k^2 \sin^2 \phi} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\paren {1 + n \sin^2 \phi} \sqrt {1 - \sin^2 \phi} \sqrt {1 - k^2 \sin^2 \phi} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int \limits_0^1 \frac {\d v} {\paren {1 + n v^2} \sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }\) substituting for $v$


Thus $\map \Pi {k, n}$ is the complete elliptic integral of the third kind by definition $2$.

$\blacksquare$