Equivalence of Definitions of Congruence
Theorem
The following definitions of the concept of Congruence in the context of Number Theory are equivalent:
Let $z \in \R$.
Definition by Remainder after Division
We define a relation $\RR_z$ on the set of all $x, y \in \R$:
- $\RR_z := \set {\tuple {x, y} \in \R \times \R: \exists k \in \Z: x = y + k z}$
This relation is called congruence modulo $z$, and the real number $z$ is called the modulus.
When $\tuple {x, y} \in \RR_z$, we write:
- $x \equiv y \pmod z$
and say:
- $x$ is congruent to $y$ modulo $z$.
Definition by Modulo Operation
Let $\bmod$ be defined as the modulo operation:
- $x \bmod y := \begin {cases} x - y \floor {\dfrac x y} & : y \ne 0 \\ x & : y = 0 \end {cases}$
Then congruence modulo $z$ is the relation on $\R$ defined as:
- $\forall x, y \in \R: x \equiv y \pmod z \iff x \bmod z = y \bmod z$
Definition by Integer Multiple
Let $x, y \in \R$.
Then $x$ is congruent to $y$ modulo $z$ if and only if their difference is an integer multiple of $z$:
- $x \equiv y \pmod z \iff \exists k \in \Z: x - y = k z$
Proof
Let $x_1, x_2, z \in \R$.
Let $x_1 \equiv x_2 \pmod z$ as defined by an equivalence relation.
That is, let $\RR_z$ be the relation on the set of all $x, y \in \R$:
- $\RR_z = \set {\tuple {x, y} \in \R \times \R: \exists k \in \Z: x = y + k z}$
Let $\tuple {x_1, x_2} \in \RR_z$.
Then by definition, $\exists k \in \Z: x_1 = x_2 + k z$.
So, by definition of the modulo operation, we have:
\(\ds x_1 \bmod z\) | \(=\) | \(\ds \paren {x_2 + k z} - z \floor {\frac {x_2 + kz} z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x_2 + k z} - z \floor {\frac {x_2} z + k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x_2 + k z} - z \floor {\frac {x_2} z} + k z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x_2 - z \floor {\frac {x_2} z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x_2 \bmod z\) |
So:
- $x_1 \equiv x_2 \pmod z$
in the sense of definition by modulo operation.
$\Box$
Now let $x_1 \equiv x_2 \pmod z$ in the sense of definition by modulo operation.
That is, :$x_1 \equiv x_2 \pmod z \iff x_1 \bmod z = x_2 \bmod z$.
Let $z = 0$.
Then by definition, $x_1 \bmod 0 = x_1$ and $x_2 \bmod 0 = x_2$.
So as $x_1 \bmod 0 = x_2 \bmod 0$ we have that $x_1 = x_2$.
So $x_1 - x_2 = 0 = 0.z$ and so $x_1 \equiv x_2 \pmod z$ in the sense of definition by integer multiple.
Now suppose $z \ne 0$.
Then from definition of the modulo operation:
- $x_1 \bmod z = x_1 - z \floor {\dfrac {x_1} z}$
- $x_2 \bmod z = x_2 - z \floor {\dfrac {x_2} z}$
Thus:
- $x_1 - z \floor {\dfrac {x_1} z} = x_2 - z \floor {\dfrac {x_2} z}$
and so:
- $x_1 - x_2 = z \paren {\floor {\dfrac {x_1} z} - \floor {\dfrac {x_2} z} }$
From the definition of the floor function, we see that both $\floor {\dfrac {x_1} z}$ and $\floor {\dfrac {x_2} z}$ are integers.
Therefore, so is $\floor {\dfrac {x_1} z} - \floor {\dfrac {x_2} z}$ an integer.
So $\exists k \in \Z: x_1 - x_2 = k z$.
Thus $x_1 - x_2 = k z$ and:
- $x_1 \equiv x_2 \pmod z$
in the sense of definition by integer multiple.
$\Box$
Now let $x_1 \equiv x_2 \pmod z$ in the sense of definition by integer multiple.
That is, $\exists k \in \Z: x_1 - x_2 = k z$.
Then $x_1 = x_2 + k z$ and so $\tuple {x_1, x_2} \in \RR_z$ where:
- $\RR_z = \set {\tuple {x, y} \in \R \times \R: \exists k \in \Z: x = y + k z}$
and so
- $x_1 \equiv x_2 \pmod z$
in the sense of definition by equivalence relation.
$\Box$
So all three definitions are equivalent: $(1) \implies (2) \implies (3) \implies (1)$.
$\blacksquare$
Also see
- Equivalence of Definitions of Integer Congruence for the integer case.