Equivalence of Definitions of Curvature/Whewell Form to Parametric Polar Form

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Curvature are equivalent:

Whewell Form

The curvature $\kappa$ of $C$ at a point $P$ can be expressed in the form of a Whewell equation as:

$\kappa = \dfrac {\d \psi} {\d s}$

where:

$\psi$ is the turning angle of $C$
$s$ is the arc length of $C$.

Parametric Polar Form

Let $C$ be embedded in a polar plane and defined by the parametric equations:

$\begin{cases} r = \map r t \\ \theta = \map \theta t \end{cases}$


The curvature $\kappa$ of $C$ at a point $P = \polar {r, \theta}$ is given by:

$\kappa = \dfrac {2 r'^2 \theta' + r r \theta' + r r' \theta + r^2 \theta'^3} {\paren {r'^2 + \paren {r \theta'}^2}^{1/2} }$

where:

$r' = \dfrac {\d r} {\d t}$ is the derivative of $r$ with respect to $t$ at $P$
$\theta' = \dfrac {\d \theta} {\d t}$ is the derivative of $\theta$ with respect to $t$ at $P$
$r$ and $\theta$ are the second derivatives of $r$ and $y$ with respect to $t$ at $P$.


Proof

Consider the curvature of a curve $C$ at a point $P$ expressed as a Whewell equation:

$\kappa = \dfrac {\d \psi} {\d s}$

where:

$\psi$ is the turning angle of $C$
$s$ is the arc length of $C$.

Let us consider $C$ expressed in cartesian form:

\(\ds x\) \(=\) \(\ds r \cos \theta\)
\(\ds y\) \(=\) \(\ds r \sin \theta\)

Then:

\(\ds \dfrac {\d x} {\d t}\) \(=\) \(\ds r' \cos \theta - r \theta' \sin \theta\) Chain Rule for Derivatives, Derivative of Cosine Function
\(\ds \dfrac {\d y} {\d t}\) \(=\) \(\ds r' \sin \theta + r \theta' \cos \theta\) Chain Rule for Derivatives, Derivative of Sine Function


In Whewell form:

\(\ds \tan \psi\) \(=\) \(\ds \dfrac {y'} {x'}\)
\(\ds s^2\) \(=\) \(\ds x'^2 + y'^2\)
\(\ds \) \(=\) \(\ds r^2 \theta'^2 + r'2\)
\(\ds \leadsto \ \ \) \(\ds \map \kappa t\) \(=\) \(\ds \dfrac {\map \arctan {\dfrac {y'} {x'} }' } {s'}\)

Let:

\(\ds g\) \(=\) \(\ds \dfrac {y'} {x'}\)
\(\ds \) \(=\) \(\ds \tan \psi\)
\(\ds \leadsto \ \ \) \(\ds \dfrac \d {\d \psi}\) \(=\) \(\ds \dfrac {\d g} {\d \psi}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d \psi} {\d g}\) \(=\) \(\ds \dfrac 1 {1 + g^2}\)
\(\ds \) \(=\) \(\ds \dfrac {x'^2} {x'^2 + y'^2}\)


We have:

$\map \kappa t = \dfrac {\d \psi} {\d g} \dfrac {\d g} {\d t} \dfrac {\d t} {\d s}$


Then:

\(\ds \dfrac {\d t} {\d s}\) \(=\) \(\ds \dfrac 1 {\paren {x'^2 + y'^2}^{1/2} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {r^2 \theta'^2 + r'2}^{1/2} }\)


\(\ds \dfrac {\d g} {\d t}\) \(=\) \(\ds \map {\dfrac \d {\d t} } {\dfrac {y'} {x'} }\)
\(\ds \) \(=\) \(\ds \map {\dfrac \d {\d t} } {\dfrac {r' \sin \theta + r \theta' \cos \theta} {r' \cos \theta - r \theta' \sin \theta} }\)
\(\ds \) \(=\) \(\ds \dfrac {x' y - y' x} {\paren {x'}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {2 r'^2 \theta' + r r' \theta - r r \theta' + r^2 \theta'^3} {\paren {x'}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {r' \paren {r \theta'}' - r r \theta' + \paren {r'^2 + \paren {r \theta'}^2} \theta'} {\paren {x'}^2}\)
\(\ds \leadsto \ \ \) \(\ds \map \kappa t\) \(=\) \(\ds \dfrac {x'^2} {s'^2} \cdot \dfrac {2 r'^2 \theta' + r r' \theta - r r \theta' + r^2 \theta'^3} {\paren {x'}^2} \cdot \dfrac 1 {\paren {r'^2 + \paren {r \theta'}^2}^{1/2} }\)
\(\ds \) \(=\) \(\ds \dfrac {2 r'^2 \theta' + r r \theta' + r r' \theta + r^2 \theta'^3} {\paren {r'^2 + \paren {r \theta'}^2}^{1/2} }\)

$\blacksquare$