Equivalence of Definitions of Derivative

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Derivative of Real Function at Point are equivalent:

Let $I$ be an open real interval.

Let $f: I \to \R$ be a real function defined on $I$.

Let $\xi \in I$ be a point in $I$.

Definition 1

That is, suppose the limit $\displaystyle \lim_{x \mathop \to \xi} \frac {f \left({x}\right) - f \left({\xi}\right)} {x - \xi}$ exists.


Then this limit is called the derivative of $f$ at the point $\xi$.

Definition 2

That is, suppose the limit $\ds \lim_{h \mathop \to 0} \frac {\map f {\xi + h} - \map f \xi} h$ exists.


Then this limit is called the derivative of $f$ at the point $\xi$.


Proof

\(\ds f' \left({\xi}\right)\) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {f \left({\xi + h}\right) - f \left({\xi}\right)} h\)
\(\ds \) \(=\) \(\ds \lim_{x - \xi \mathop \to 0} \frac {f \left({x}\right) - f \left({\xi}\right)} {\xi + h - \xi}\) substituting $x = \xi + h$
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to \xi} \frac {f \left({x}\right) - f \left({\xi}\right)} {x - \xi}\)

$\blacksquare$


Sources