Equivalence of Definitions of Distance to Nearest Integer Function

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the distance to nearest integer function $\norm \cdot: \R \to \closedint 0 {\dfrac 1 2}$ are equivalent:

Definition 1

$\norm \alpha:= \min \set {\size {n - \alpha}: n \in \Z}$

Definition 2

$\norm \alpha:= \min \set {\set \alpha, 1 - \set \alpha}$

where $\set \alpha$ is the fractional part of $\alpha$.


Proof

Let $\alpha \in \R$, $n \in \Z$.

From Real Number is between Floor Functions:

$\floor \alpha \le \alpha < \floor \alpha + 1$


For any $n < \floor \alpha \le \alpha$:

\(\ds \size {n - \alpha}\) \(=\) \(\ds \alpha - n\) Definition of Absolute Value
\(\ds \) \(>\) \(\ds \alpha - \floor \alpha\)
\(\ds \) \(=\) \(\ds \size {\alpha - \floor \alpha}\) Definition of Absolute Value

For any $n > \floor \alpha + 1 > \alpha$:

\(\ds \size {n - \alpha}\) \(=\) \(\ds n - \alpha\) Definition of Absolute Value
\(\ds \) \(>\) \(\ds \floor \alpha + 1 - \alpha\)
\(\ds \) \(=\) \(\ds \size {\floor \alpha + 1 - \alpha}\) Definition of Absolute Value

Thus:

\(\ds \min \set {\size {n - \alpha}: n \in \Z}\) \(=\) \(\ds \min \set {\size {\floor \alpha - \alpha}, \size {\floor \alpha + 1 - \alpha} }\) Other $n$'s are disregarded by above
\(\ds \) \(=\) \(\ds \min \set {\alpha - \floor \alpha, \floor \alpha + 1 - \alpha}\)
\(\ds \) \(=\) \(\ds \min \set {\set \alpha, 1 - \set \alpha}\) Definition of Fractional Part

which shows that the definitions are indeed equivalent.

$\blacksquare$