Equivalence of Definitions of Equivalent Division Ring Norms/Open Unit Ball Equivalent implies Norm is Power of Other Norm/Lemma 2/Lemma 2.1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a division ring.

Let $\norm {\, \cdot \,}_1: R \to \R_{\ge 0}$ and $\norm {\, \cdot \,}_2: R \to \R_{\ge 0}$ be norms on $R$.

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ satisfy:

$\forall y \in R: \norm y_1 < 1 \iff \norm y_2 < 1$


Then:

$\forall y \in R: \norm y_1 > 1 \iff \norm y_2 > 1$


Proof

For $y \in R$ then:

\(\ds \norm y_1 > 1\) \(\leadstoandfrom\) \(\ds \dfrac 1 {\norm y_1 } < 1\)
\(\ds \) \(\leadstoandfrom\) \(\ds \norm {y^{-1} }_1 < 1\) Norm of Inverse in Division Ring
\(\ds \) \(\leadstoandfrom\) \(\ds \norm {y^{-1} }_2 < 1\) by assumption
\(\ds \) \(\leadstoandfrom\) \(\ds \dfrac 1 {\norm y_2 } < 1\) Norm of Inverse in Division Ring
\(\ds \) \(\leadstoandfrom\) \(\ds \norm y_2 > 1\)

$\blacksquare$