Equivalence of Definitions of Filter on Set
Theorem
The following definitions of the concept of Filter on Set are equivalent:
Definition 1
A set $\FF \subset \powerset S$ is a filter on $S$ if and only if $\FF$ satisfies the filter on set axioms:
\((\text F 1)\) | $:$ | \(\ds S \in \FF \) | |||||||
\((\text F 2)\) | $:$ | \(\ds \O \notin \FF \) | |||||||
\((\text F 3)\) | $:$ | \(\ds U, V \in \FF \implies U \cap V \in \FF \) | |||||||
\((\text F 4)\) | $:$ | \(\ds \forall U \in \FF: U \subseteq V \subseteq S \implies V \in \FF \) |
Definition 2
A set $\FF \subset \powerset S$ is a filter on $S$ if and only if $\FF$ satisfies the filter on set axioms:
\((\text F 1)\) | $:$ | \(\ds S \in \FF \) | |||||||
\((\text F 2)\) | $:$ | \(\ds \O \notin \FF \) | |||||||
\((\text F 3)\) | $:$ | \(\ds \forall n \in \N: U_1, \ldots, U_n \in \FF \implies \bigcap_{i \mathop = 1}^n U_i \in \FF \) | |||||||
\((\text F 4)\) | $:$ | \(\ds \forall U \in \FF: U \subseteq V \subseteq S \implies V \in \FF \) |
Proof
Conditions $(\text F 1)$, $(\text F 2)$ and $(\text F 4)$ are the same for both definitions.
It remains to establish that $(\text F 3)$ in Definition 1 is equivalent to $(\text F 3)$ in Definition 2.
$(1)$ implies $(2)$
Let $\FF$ be a filter on $S$ by definition $1$.
Then by definition:
- $U_1, U_2 \in \FF \implies U_1 \cap U_2 \in \FF$
Suppose that for some $k \in \N$:
- $(\text F 3): U_1, \ldots, U_k \in \FF \implies \ds \bigcap_{i \mathop = 1}^k U_i \in \FF$
Then we have:
- $\ds \paren {\bigcap_{i \mathop = 1}^k U_i} \cap U_{k + 1} = \bigcap_{i \mathop = 1}^{k + 1} U_i$
by hypothesis.
Hence by induction:
- $U_1, \ldots, U_k, U_{k + 1} \in \FF \implies \ds \bigcap_{i \mathop = 1}^{k + 1} U_i \in \FF$
Thus $\FF$ is a filter on $S$ by definition $2$.
$\Box$
$(2)$ implies $(1)$
Let $\FF$ be a filter on $S$ by definition $2$.
Then by definition:
- $(\text F 3): \forall n \in \N: U_1, \ldots, U_n \in \FF \implies \ds \bigcap_{i \mathop = 1}^n U_i \in \FF$
In particular when $n = 2$:
- $U_1, U_2 \in \FF \implies U_1 \cap U_2 \in \FF$
Thus $\FF$ is a filter on $S$ by definition $1$.
$\blacksquare$