Equivalence of Definitions of Hyperbolic Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Hyperbolic Tangent are equivalent:

Definition 1

The hyperbolic tangent function is defined on the complex numbers as:

$\tanh: X \to \C$:
$\forall z \in X: \tanh z := \dfrac {e^z - e^{-z} } {e^z + e^{-z} }$

where:

$X = \set {z : z \in \C, \ e^z + e^{-z} \ne 0}$

Definition 2

The hyperbolic tangent function is defined on the complex numbers as:

$\tanh: X \to \C$:
$\forall z \in X: \tanh z := \dfrac {\sinh z} {\cosh z}$

where:

$\sinh$ is the hyperbolic sine
$\cosh$ is the hyperbolic cosine
$X = \set {z : z \in \C, \ \cosh z \ne 0}$

Definition 3

The hyperbolic tangent function is defined on the complex numbers as:

$\tanh: X \to \C$:
$\forall z \in X: \tanh z := \dfrac {e^{2 z} - 1} {e^{2 z} + 1}$

where:

$X = \set {z: z \in \C, \ e^{2 z} + 1 \ne 0}$


Proof

\(\displaystyle \forall z \in \left\{ {z \in \C: \ e^{2 z} + 1 \ne 0}\right\}: \ \ \) \(\displaystyle \) \(\) \(\displaystyle \frac {e^{2 z} - 1} {e^{2 z} + 1}\) Definition of Hyperbolic Tangent: Definition 3
\(\displaystyle \forall z \in \left\{ {z \in \C: \ e^z + e^{-z} \ne 0}\right\}: \ \ \) \(\displaystyle \) \(=\) \(\displaystyle \frac {e^z \left({e^z - e^{-z} }\right)} {e^z \left({e^z + e^{-z} }\right)}\)
\(\displaystyle \forall z \in \left\{ {z \in \C: \ e^z + e^{-z} \ne 0}\right\}: \ \ \) \(\displaystyle \) \(=\) \(\displaystyle \frac {e^z - e^{-z} } {e^z + e^{-z} }\) Definition of Hyperbolic Tangent: Definition 1
\(\displaystyle \forall z \in \left\{ {z \in \C: \ \frac {e^z + e^{-z} } 2 \ne 0}\right\}: \ \ \) \(\displaystyle \) \(=\) \(\displaystyle \frac {\left({\dfrac {e^z - e^{-z} } 2}\right) } {\left({\dfrac {e^z + e^{-z} } 2}\right) }\)
\(\displaystyle \forall z \in \left\{ {z \in \C: \ \cosh z \ne 0}\right\}: \ \ \) \(\displaystyle \) \(=\) \(\displaystyle \frac {\sinh z} {\cosh z}\) Definition of Hyperbolic Tangent: Definition 2

$\blacksquare$