Equivalence of Definitions of Irreducible Polynomial over Field
Jump to navigation
Jump to search
Theorem
Let $K$ be a field.
The following definitions of the concept of Irreducible Polynomial are equivalent:
Definition 1
Let $R$ be an integral domain.
An irreducible polynomial over $R$ is an irreducible element of the polynomial ring $R \left[{X}\right]$.
Definition 2: for fields
Let $K$ be a field.
An irreducible polynomial over $K$ is a nonconstant polynomial over $K$ that is not the product of two polynomials of smaller degree.
Definition 3: for fields
Let $K$ be a field.
An irreducible polynomial over $K$ is a polynomial over $K$ that is not the product of two nonconstant polynomials.
Proof
Note that by Field is Integral Domain, $K$ is indeed an integral domain.
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |