Equivalence of Definitions of Limit Superior of Sequence of Sets

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Limit Superior of Sequence of Sets are equivalent:

Definition 1

Let $\sequence {E_n : n \in \N}$ be a sequence of sets.


Then the limit superior of $\sequence {E_n: n \in \N}$, denoted $\ds \limsup_{n \mathop \to \infty} E_n$, is defined as:

\(\ds \limsup_{n \mathop \to \infty} E_n\) \(:=\) \(\ds \bigcap_{i \mathop = 0}^\infty \bigcup_{n \mathop = i}^\infty E_n\)
\(\ds \) \(=\) \(\ds \paren {E_0 \cup E_1 \cup E_2 \cup \ldots} \cap \paren {E_1 \cup E_2 \cup E_3 \cup \ldots} \cap \ldots\)

Definition 2

Let $\sequence {E_n: n \in \N}$ be a sequence of sets.


Then the limit superior of $\sequence {E_n: n \in \N}$, denoted $\ds \limsup_{n \mathop \to \infty} E_n$, is defined as:

$\ds \limsup_{n \mathop \to \infty} E_n = \set {x : x \in E_i \text { for infinitely many } i}$


Proof

Begin by defining:

$\ds B_n := \bigcup_{j \mathop = n}^\infty E_j$

Then by definition 1:

$\ds \limsup_{n \mathop \to \infty} E_n = \bigcap_{n \mathop = 0}^\infty B_n$


First Direction

Let $x$ belong to $E_i$ for infinitely many $i \in \N$.

Let $\map \phi n$ be the sequence consisting of these numbers in increasing order.

Then for any number $k$, there exists a number $a$ such that $\map \phi a \ge k$.

Hence:

$\ds x \in E_{\map \phi a} \subseteq \bigcup_{j \mathop = k}^\infty E_j = B_k$

Since $k$ was arbitrary, it follows that $x \in B_n$ for each $n$.

So:

$\ds x \in \limsup_{n \mathop \to \infty} E_n$


Second Direction

Let:

$\ds x \in \bigcap_{n \mathop = 0}^\infty B_n$

Aiming for a contradiction, suppose $x$ occurs in only finitely many $E_i$.

Then there is a largest value of $i$ (call it $i_0$) for which the membership holds.

Hence:

$x \notin \paren {E_{i_0 + 1} \cup E_{i_0 + 2} \cup \ldots} = B_{i_0 + 1}$

Therefore:

$\ds x \notin \bigcap_{n \mathop = 0}^\infty B_n$

This contradicts our assumption about $x$.

Hence $x$ belongs to infinitely many terms of the sequence.

$\blacksquare$


Sources